Phospholipid cofactor solubilization inhibits formation of native prions

Author:

Schwind Abigail M.1,Walsh Daniel J.1,Burke Cassandra M.1,Supattapone Surachai12ORCID

Affiliation:

1. Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth Hanover New Hampshire USA

2. Department of Medicine, Geisel School of Medicine at Dartmouth Hanover New Hampshire USA

Abstract

AbstractCofactor molecules are required to generate infectious mammalian prions in vitro. Mouse and hamster prions appear to have different cofactor preferences: Whereas both mouse and hamster prions can use phosphatidylethanolamine (PE) as a prion cofactor, only hamster prions can also use single‐stranded RNA as an alternative cofactor. Here, we investigated the effect of detergent solubilization on rodent prion formation in vitro. We discovered that detergents that can solubilize PE (n‐octylglucoside, n‐octylgalactoside, and CHAPS) inhibit mouse prion formation in serial protein misfolding cyclic amplification (sPMCA) reactions using bank vole brain homogenate substrate, whereas detergents that are unable to solubilize PE (Triton X‐100 and IPEGAL) have no effect. For all three PE‐solubilizing detergents, inhibition of RML mouse prion formation was only observed above the critical micellar concentration (CMC). Two other mouse prion strains, Me7 and 301C, were also inhibited by the three PE‐solubilizing detergents but not by Triton X‐100 or IPEGAL. In contrast, none of the detergents inhibited hamster prion formation in parallel sPMCA reactions using the same bank vole brain homogenate substrate. In reconstituted sPMCA reactions using purified substrates, n‐octylglucoside inhibited hamster prion formation when immunopurified bank vole PrPC substrate was supplemented with brain phospholipid but not with RNA. Interestingly, phospholipid cofactor solubilization had no effect in sPMCA reactions using bacterially expressed recombinant PrP substrate, indicating that the inhibitory effect of solubilization requires PrPC post‐translational modifications. Overall, these in vitro results show that the ability of PE to facilitate the formation of native but not recombinant prions requires phospholipid bilayer integrity, suggesting that membrane structure may play an important role in prion formation in vivo.image

Funder

National Institute of General Medical Sciences

National Institute of Neurological Disorders and Stroke

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3