PowerPulse: Power energy chat model with LLaMA model fine‐tuned on Chinese and power sector domain knowledge

Author:

Yin ChunLin12,Du KunPeng34,Nong Qiong3,Zhang HongCheng5,Yang Li1,Yan Bin5,Huang Xiang1,Wang XiaoBo3,Zhang Xuan36ORCID

Affiliation:

1. Electric Power Research Institute of Yunnan Power Grid Co., Ltd. Kunming China

2. School of Information Science and Engineering Yunnan University Kunming China

3. School of Software Yunnan University Kunming China

4. School of Electromechanical Information Yiwu Industrial & Commercial College Jinhua China

5. Policy Research and Enterprise Management Department Yunnan Power Grid Co., Ltd. Kunming China

6. Yunnan Key Laboratory of Software Engineering Yunnan University Kunming China

Abstract

AbstractRecently, large‐scale language models (LLMs) such as chat generative pre‐trained transformer and generative pre‐trained transformer 4 have demonstrated remarkable performance in the general domain. However, inadaptability in a particular domain has led to hallucination for these LLMs when responding in specific domain contexts. The issue has attracted widespread attention, existing domain‐centered fine‐tuning efforts have predominantly focused on sectors like medical, financial, and legal, leaving critical areas such as power energy relatively unexplored. To bridge this gap, this paper introduces a novel power energy chat model called PowerPulse. Built upon the open and efficient foundation language models (LLaMA) architecture, PowerPulse is fine‐tuned specifically on Chinese Power Sector Domain Knowledge. This work marks the inaugural application of the LLaMA model in the field of power energy. By leveraging pertinent pre‐training data and instruction fine‐tuning datasets tailored for the power energy domain, the PowerPulse model showcases exceptional performance in tasks such as text generation, summary extraction, and topic classification. Experimental results validate the efficacy of the PowerPulse model, making significant contributions to the advancement of specialized language models in specific domains.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

Reference51 articles.

1. Aghajanyan A. Zettlemoyer L. &Gupta S.(2020).Intrinsic dimensionality explains the effectiveness of language model fine‐tuning. arXiv preprint arXiv:2012.13255.

2. Ali N. Tubaishat A. Al‐Obeidat F. Shabaz M. Waqas M. Halim Z. Rida I. &Anwar S.(2023).Towards enhanced identification of emotion from resource‐constrained language through a novel multilingual BERT approach. ACM Transactions on Asian and Low‐Resource Language Information Processing. All Works. 5790.

3. Wei J. Bosma M. Zhao V. Y. Guu K. Yu A. W. Lester B. Du N. Dai A. M. &Le Q. V.(2021).Finetuned language models are zero‐shot learners. arXiv preprint arXiv:2109.01652.

4. Burke L. Pazdernik K. Fortin D. Wilson B. Goychayev R. &Mattingly J.(2021).NukeLM: Pre‐Trained and Fine‐Tuned Language Models for the Nuclear and Energy Domains. arXiv preprint arXiv:2105.12192.

5. Chen M. Tworek J. Jun H. Yuan Q. Pinto H. P. D. O. Kaplan J. Edwards H. Burda Y. Joseph N. Brockman G. Ray A. Puri R. Krueger G. Petrov M. Khlaaf H. Sastry G. Mishkin P. Chan B. Gray S. &Zaremba W.(2021).Evaluating large language models trained on code. arXiv preprint arXiv:2107.03374.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Instruction Fine-tuning and LoRA Combined Approach for Optimizing Large Language Models;Journal of Society of Korea Industrial and Systems Engineering;2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3