Enhancing diversity for logical table‐to‐text generation with mixture of experts

Author:

Wu Jie1ORCID,Hou Mengshu12

Affiliation:

1. School of Computer Science and Engineering University of Electronic Science and Technology of China Chengdu China

2. School of Big Data and Artificial Intelligence Chengdu Technological University Chengdu China

Abstract

AbstractLogical table‐to‐text generation is a task within the realm of natural language generation (NLG) that aims to generate coherent and logically faithful sentences based on tables. Unlike conventional NLG tasks, this task demands not only surface‐level fluency but also a high degree of logic‐level fidelity in the generated outputs. Current table‐to‐text systems grapple with various quality issues, such as repetitive generation, insufficient reasoning and limited complexity. Therefore, we introduce LogicMoE, a dedicated Mixture‐of‐Experts (MoE) model tailored for logical table‐to‐text generation. The primary objective of LogicMoE is to enrich the diversity of generated sentences from both semantic and logical perspectives. In particular, each expert within the model serves as a specialized generator responsible for generating sentences of a specific logical type. Additionally, we propose and employ novel evaluation metrics to comprehensively assess the diversity of generated outputs. Our experimental results showcase LogicMoE's superiority with absolute improvements of 0.8 and 2.2 in BLEU‐3 over the strong baselines on LogicNLG and Logic2Text datasets, respectively, driving the state‐of‐the‐art performance to a new level. Furthermore, we highlight its inherent advantages in terms of diversity and controllability, signifying its potential to spearhead advancements in logical table‐to‐text generation applications.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3