Enhanced text classification through an improved discrete laying chicken algorithm

Author:

Daneshfar Fatemeh1ORCID,Aghajani Mohammad Javad1

Affiliation:

1. Department of Computer Engineering University of Kurdistan Sanandaj Kurdistan Iran

Abstract

AbstractThe exponential growth of digital text documents presents a significant challenge for text classification algorithms, as the vast number of words in each document can hinder their efficiency. Feature selection (FS) is a crucial technique that aims to eliminate irrelevant features and enhance classification accuracy. In this study, we propose an improved version of the discrete laying chicken algorithm (IDLCA) that utilizes noun‐based filtering to reduce the number of features and improve text classification performance. Although LCA is a newly proposed algorithm, it has not been systematically applied to discrete problems before. Our enhanced version of LCA employs different operators to improve both exploration and exploitation of this algorithm to find better solutions in discrete mode. To evaluate the effectiveness of the proposed method, we compared it with some conventional nature‐inspired feature selection methods using various learning models such as decision trees (DT), K‐nearest neighbor (KNN), Naive Bayes (NB), and support vector machine (SVM) on five benchmark datasets with three different evaluation metrics. The experimental results demonstrate the effectiveness of the proposed algorithm in comparison to the existing one. The code is available at https://github.com/m0javad/Improved-Discrete-Laying-Chicken-Algorithm.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3