Combined use of radiomics and artificial neural networks for the three‐dimensional automatic segmentation of glioblastoma multiforme

Author:

de los Reyes Alexander Mulet12,Lord Victoria Hyde3,Buemi Maria Elena4,Gandía Daniel5,Déniz Luis Gómez6,Alemán Maikel Noriega7,Suárez Cecilia12ORCID

Affiliation:

1. Facultad de Ciencias Exactas y Naturales, Departamento de Física Universidad de Buenos Aires Buenos Aires Argentina

2. Instituto de Física Interdisciplinaria y Aplicada (INFINA) CONICET – Universidad de Buenos Aires Buenos Aires Argentina

3. Instituto Tecnológico Buenos Aires Buenos Aires Argentina

4. Facultad de Ciencias Exactas y Naturales, Departamento de Computación Universidad de Buenos Aires Buenos Aires Argentina

5. Centro de Especialidades Médicas Buenos Aires Provincia de Buenos Aires Argentina

6. Departamento de Ingeniería Electrónica y Automática Universidad de Las Palmas de Gran Canaria Las Palmas de Gran Canaria Spain

7. Facultad de Ingeniería en Telecomunicaciones, Informática y Biomédica Universidad de Oriente Santiago de Cuba Cuba

Abstract

AbstractGlioblastoma multiforme (GBM) is the most prevalent and aggressive primary brain tumour that has the worst prognosis in adults. Currently, the automatic segmentation of this kind of tumour is being intensively studied. Here, the automatic three‐dimensional segmentation of the GBM is achieved with its related subzones (active tumour, inner necrosis, and peripheral oedema). Preliminary segmentations were first defined based on the four basic magnetic resonance imaging modalities and classic image processing methods (multithreshold Otsu, Chan–Vese active contours, and morphological erosion). After an automatic gap‐filling post processing step, these preliminary segmentations were combined and corrected by a supervised artificial neural network of multilayer perceptron type with a hidden layer of 80 neurons, fed by 30 selected radiomic features of gray intensity and texture. Network classification has an overall accuracy of 83.9%, while the complete combined algorithm achieves average Dice similarity coefficients of 89.3%, 80.7%, 79.7%, and 66.4% for the entire region of interest, active tumour, oedema, and necrosis segmentations, respectively. These values are in the range of the best reported in the present bibliography, but even with better Hausdorff distances and lower computational costs. Results presented here evidence that it is possible to achieve the automatic segmentation of this kind of tumour by traditional radiomics. This has relevant clinical potential at the time of diagnosis, precision radiotherapy planning, or post‐treatment response evaluation.

Funder

Universidad de Las Palmas de Gran Canaria

Consejo Nacional de Investigaciones Científicas y Técnicas

Publisher

Wiley

Reference49 articles.

1. Radiomics for precision medicine in glioblastoma

2. Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing

3. Segmentation labels and radiomic features for the pre‐operative scans of the TCGA‐GBM collection;Bakas S.;The Cancer Imaging Archive,2017

4. Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic features

5. Bakas S. Reyes M. Jakab A. Bauer S. Rempfler M. Crimi A. Shinohara R. T. Berger C. Ha S. M. Rozycki M. Prastawa M. Alberts E. Lipkova J. Freymann J. Kirby J. Bilello M. Fathallah‐Shaykh H. Wiest R. Kirschke J. …Bisdas S.(2018).Identifying the best machine learning algorithms for brain tumor segmentation progression assessment and overall survival prediction in the BRATS challenge.arXiv 1811.02629(v3).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3