Predicting word vectors for microtext

Author:

Chaturvedi Iti1ORCID,Satapathy Ranjan2ORCID,Lynch Curtis1,Cambria Erik3

Affiliation:

1. Information Technology James Cook University Townsville Australia

2. Institute of High Performance Computing Agency for Science, Technology and Research Singapore Singapore

3. School of Computer Science and Engineering Nanyang Technological University Singapore Singapore

Abstract

AbstractThe use of computer‐mediated communication has resulted in a new form of written text called Microtext, which is very different from well‐written text. Most previous approaches deal with microtext at the character level rather than just words resulting in increased processing time. In this paper, we propose to transform static word vectors to dynamic form by modelling the effect of neighbouring words and their sentiment strength in the AffectiveSpace. To evaluate the approach, we crawled Tweets from diverse topics and human annotation was used to label their sentiments. We also normalized the tweets to fix phonetic variations, spelling errors, and abbreviations manually. A total of 1432 out‐of‐vocabulary (OOV) texts and their IV texts made it to the final corpus with their corresponding polarity. To assess the quality of the corpus, we used several OOV classifiers such as linear regression and observed over 90% accuracy. Next, we inferred word vectors using a novel four‐gram model based on sentiment intensity and reported accuracy on both open domain and closed domain sentiment classifiers. We observed an improvement in the range of 4–20 on Twitter, Movie and Airline reviews over baselines.

Funder

James Cook University

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Barrier Function to Skin Elasticity in Talking Head;Cognitive Computation;2024-08-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3