Evolution of confrontation and cooperation in simple organisms as a function of environmental resources and cost of a conflict

Author:

Chassy Philippe1ORCID,Cole Jon2,Brennan Chloe2

Affiliation:

1. Canterbury Christ Church University Canterbury UK

2. Tactical Decision Making Research Group University of Liverpool Liverpool UK

Abstract

AbstractThe root cause of human conflict needs to be understood but it is currently unknown whether the decision to engage in conflict is an inherited or acquired trait. This article reports two experimental simulations which demonstrate that the level of confrontation in a population of simple organisms can be explained by the evolution of a simulated gene pool. Game theory and evolutionary algorithms were combined in a novel way to examine how six variables influenced the decision to confront in the competition for resources. The main variable was how the genetically determined rate of confrontation evolved as a function of environmental resources and cost of a conflict. The additional modulatory effects of four other variables were also considered in the first round of simulations. Two variables were responsive to the difference between resources and cost. Two other variables were responsive to the organism's health status. Taking a systematic approach, we examined how a population of 1000 organisms were evolving in environments with different levels of reward and punishment. During each cycle, each organism was paired with another organism and thus needed to decide whether to confront or cooperate. We used a genetic algorithm to simulate the evolution of the gene pool over 500 cycles. The first series of simulations demonstrated that the baseline rate of confrontation was very responsive to environmental conditions. Our results also indicate that the decision to confront or cooperate depended not only upon the immediate competitive conditions, in which the organisms evolved, but were also responsive to their own health status. The second series of simulations used zero‐sum games to explore how risk levels varied as a function of the potential cost of engaging in a confrontation. In the second round of simulations, a simple form of memory was implemented. The results indicated that memory had a limited, but significant effect, while the cost of a conflict was highly predictive of the level of risk taken by the organisms. Our two series of simulations show that AI could contribute to answering psychological and societal questions. Our unique combination of techniques has brought to light several new insights into the mechanisms that drive the population towards cooperation and confrontation. The degree of generalizability of our results and future avenues for deepening our understanding of these evolutionary dynamics are discussed.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3