A new computer‐aided diagnostic method for classifying anaemia disease: Hybrid use of Tree Bagger and metaheuristics

Author:

Yagmur Nagihan1ORCID,Dag Idiris1ORCID,Temurtas Hasan2ORCID

Affiliation:

1. Faculty of Engineering and Architecture, Department of Computer Engineering Eskisehir Osmangazi University Eskisehir Turkey

2. Faculty of Engineering, Department of Computer Engineering Kutahya Dumlupınar University Kutahya Turkey

Abstract

AbstractAnaemia occurs when the haemoglobin (Hgb) value falls below a certain reference range. It requires many blood tests, radiological images, and tests for diagnosis and treatment. By processing medical data from patients with artificial intelligence and machine learning methods, disease predictions can be made for newly ill individuals and decision‐support mechanisms can be created for physicians with these predictions. Thanks to these methods, which are very important in reducing the margin of error in the diagnoses made by doctors, the evaluation of data records in health institutions is also important for patients and hospitals. In this study, six hybrid models are proposed to classify non‐anaemia records, Hgb‐anaemia, folate deficiency anaemia (FDA), iron deficiency anaemia (IDA), and B12 deficiency anaemia by combining artificial intelligence and machine learning methods TreeBagger, Crow Search Algorithm (CSA), Chicken Swarm Optimization Algorithm (CSO) and JAYA methods. The proposed hybrid models are analysed with two different approaches, with/without applying the SMOTE technique to achieve high performance by better emphasizing the importance of parameters. To solve the multiclass anaemia classification problem, fuzzy logic‐based parameter optimization is applied to improve the class‐based accuracy as well as the overall accuracy in the dataset. The proposed methods are evaluated using ROC criteria to build a prediction model to determine the anaemia type of anaemic patients. As a result of the study on the dataset taken from the Kaggle database, it is observed that the six proposed hybrid methods outperformed other studies using the same dataset and similar studies in the literature.

Publisher

Wiley

Subject

Artificial Intelligence,Computational Theory and Mathematics,Theoretical Computer Science,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3