Probabilistic interval prediction method based on shape‐adaptive quantile regression

Author:

Li Lin1ORCID,Wang Hua2,Liu Yepeng13,Zhang Fan13

Affiliation:

1. School of Computer Science and Technology Shandong Technology and Business University Yantai China

2. School of Information and Electrical Engineering Ludong University Yantai China

3. Shandong Future Intelligent Financial Engineering Laboratory Shandong Technology and Business University Yantai China

Abstract

AbstractThis article introduces customized screening ensemble with shape‐adaptive quantile regression (CseAQR), a novel probabilistic interval forecasting method built upon the quantile regression model. CseAQR utilizes ensemble learning to perform adaptive quantile regression prediction, which can handle the heteroscedasticity feature in time series data by using a weighted adaptive allocation loss function to enhance the adaptability of the basic quantile regression model on the dataset. The model performance predictor is used to select the optimal ensemble learner combination, assign reasonable adaptive weights to it, and obtain a preliminary prediction interval through weighted aggregation. Combining ensemble learners not only improves the accuracy and robustness of prediction intervals but also ensures the commutativity required for conformal prediction. Finally, the conformal prediction method is applied to locally adjust the prediction interval, constructing a more consistently aligned prediction interval with the actual data on a narrower basis.

Funder

National Natural Science Foundation of China

Youth Innovation Technology Project of Higher School in Shandong Province

Natural Science Foundation of Shandong Province

Publisher

Wiley

Reference47 articles.

1. A Priori Identification of Skillful Extratropical Subseasonal Forecasts

2. Angelopoulos A. N. &Bates S.(2021).A gentle introduction to conformal prediction and distribution‐free uncertainty quantification. arXiv preprint arXiv:2107.07511.

3. Heteroskedasticity in multiple regression analysis: What it is, How to Detect it and How to Solve it with Applications in R and SPSS;Astivia O. L. O.;Practical Assessment, Research and Evaluation,2019

4. Avd O. Dieleman S. Zen H. Simonyan K. Vinyals O. Graves A. Kalchbrenner N. Senior A. &Kavukcuoglu K.(2016).Wavenet: A generative model for raw audio. arXiv preprint arXiv:1609.03499.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3