Hate speech detection: A comprehensive review of recent works

Author:

Gandhi Ankita1ORCID,Ahir Param1,Adhvaryu Kinjal2,Shah Pooja3ORCID,Lohiya Ritika4,Cambria Erik5,Poria Soujanya6,Hussain Amir7ORCID

Affiliation:

1. School of Cyber Security and Digital Forensic National Forensic Sciences University Ganhinagar Gujarat India

2. Computer Engineering Shankarsinh Vaghela Bapu Institute of Technology Ganhinagar Gujarat India

3. School of Technology Pandit Dindayal Energy University Ganhinagar Gujarat India

4. Faculty of Engineering, Sciences and Technology Adani University Ganhinagar Gujarat India

5. School of Computer Science and Engineering Nanyang Technological University Singapore Singapore

6. Singapore University of Technology and Design, Singapore University of Technology and Design Singapore Singapore

7. Edinburgh Napier University Edinburgh Scotland

Abstract

AbstractThere has been surge in the usage of Internet as well as social media platforms which has led to rise in online hate speech targeted on individual or group. In the recent years, hate speech has resulted in one of the challenging problems that can unfurl at a fast pace on digital platforms leading to various issues such as prejudice, violence and even genocide. Considering the acceptance of Artificial Intelligence (AI) and Natural Language Processing (NLP) techniques in varied application domains, it would be intriguing to consider these techniques for automated hate speech detection. In literature, there have been efforts to recognize and categorize hate speech using varied Machine Learning (ML) and Deep Learning (DL) techniques. Hence, considering the need and provocations for hate speech detection we aim to present a comprehensive review that discusses fundamental taxonomy as well as recent advances in the field of online hate speech identification. There is a significant amount of literature related to the initial phases of hate speech detection. The background section provides a detailed explanation of the previous research. The subsequent section that follows is dedicated to examining the recent literature published from the year 2020 onwards. The paper presents some of the hate speech datasets considered for hate speech detection. Furthermore, the paper discusses different data modalities, namely, textual hate speech detection, multi‐modal hate speech detection and multilingual hate speech detection. Apart from systematic review on hate speech detection, the paper also implement several multi‐label models to compare the performance of hate speech detection by employing classic ML technique namely, Logistic Regression and DL technique namely, Long Short‐Term Memory (LSTM) and a multiclass multi‐label architecture. In the implemented architecture, we have derived two new elements to quantify the hatefulness and intensity of hatred to improve the results for hate speech detection using Indonesian tweet dataset. Empirical Analysis of the model reveals that the implemented approach outperforms and is able to achieve improved results for the underlying dataset.

Publisher

Wiley

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3