Arbuscular mycorrhizal fungi enhance plant phosphorus uptake through stimulating hyphosphere soil microbiome functional profiles for phosphorus turnover

Author:

Wang Guiwei1,Jin Zexing1,George Timothy S.2ORCID,Feng Gu1ORCID,Zhang Lin1ORCID

Affiliation:

1. College of Resources and Environmental Sciences, MOE Key Laboratory of Plant‐Soil Interactions, National Academy of Agriculture Green Development China Agricultural University Beijing 100193 China

2. The James Hutton Institute, Invergowrie Dundee DD2 5DA UK

Abstract

Summary The extraradical hyphae of arbuscular mycorrhizal (AM) fungi are colonized by different bacteria in natural and agricultural systems, but the mechanisms by which AM fungi interact with the hyphosphere soil microbiome and influence soil organic phosphorus (P) mobilization remain unclear. We grew Medicago in two‐compartment microcosms, inoculated with Rhizophagus irregularis, or not, in the root compartment and set up P treatments (without P, with P addition as KH2PO4 or nonsoluble phytate) in the hyphal compartment. We studied the processes of soil P turnover and characterized the microbiome functional profiles for P turnover in the hyphosphere soil by metagenomic sequencing. Compared with the bulk soil, the hyphosphere soil of R. irregularis was inhabited by a specific bacterial community and their functional profiles for P turnover was stimulated. At the species level, the shift in hyphosphere soil microbiome was characterized by the recruitment of the genome bin2.39 harbouring both gcd and phoD genes and genome bin2.97 harbouring the phoD gene, which synergistically drove nonsoluble phytate mobilization in the hyphosphere soil. Our results suggest that AM fungi recruits a specific hyphosphere soil microbiome and stimulated their functional profiles for P turnover to enhance utilization of phytate.

Funder

Beijing Natural Science Foundation

National Natural Science Foundation of China

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3