Practical strategies for robust and inexpensive imaging of aqueous‐cleared tissues

Author:

Williams Rebecca M.1ORCID,Bloom Jordana C.2,Robertus Cara M.3,Recknagel Andrew K.4,Putnam David5,Schimenti John C.6,Zipfel Warren R.3

Affiliation:

1. BRC Imaging Facility, Institute of Biotechnology Cornell University Ithaca New York

2. Whitehead Institute for Biomedical Research Massachusetts Institute of Technology Cambridge Massachusetts

3. Meinig School of Biomedical Engineering Cornell University Ithaca New York

4. Glassy Mountain Fire Department Landrum South Carolina

5. Meinig School of Biomedical Engineering, Smith School of Chemical and Biomolecular Engineering Cornell University Ithaca New York

6. Department of Biomedical Sciences Cornell University Ithaca New York

Abstract

AbstractLightsheet microscopy offers an ideal method for imaging of large (mm–cm scale) biological tissues rendered transparent via optical clearing protocols. However the diversity of clearing technologies and tissue types, and how these are adapted to the microscope can make tissue mounting complicated and somewhat irreproducible. Tissue preparation for imaging can involve glues and or equilibration in a variety of expensive and/or proprietary formulations. Here we present practical advice for mounting and capping cleared tissues in optical cuvettes for macroscopic imaging, providing a standardised 3D cell that can be imaged routinely and relatively inexpensively. We show that acrylic cuvettes cause minimal spherical aberration with objective numerical apertures less than 0.65. Furthermore, we describe methods for aligning and assessing the light sheets, discriminating fluorescence from autofluorescence, identifying chromatic artefacts due to differential scattering and removing streak artefacts such that they do not confound downstream 3D object segmentation analyses, with mouse embryo, liver and heart imaging as demonstrated examples.

Funder

National Institutes of Health

Publisher

Wiley

Subject

Histology,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3