Finding Hierarchical Structure in Binary Sequences: Evidence from Lindenmayer Grammar Learning

Author:

Schmid Samuel1,Saddy Douglas2,Franck Julie1

Affiliation:

1. Faculty of Psychology University of Geneva

2. Centre for Integrative Neuroscience and Neurodynamics University of Reading

Abstract

AbstractIn this article, we explore the extraction of recursive nested structure in the processing of binary sequences. Our aim was to determine whether humans learn the higher‐order regularities of a highly simplified input where only sequential‐order information marks the hierarchical structure. To this end, we implemented a sequence generated by the Fibonacci grammar in a serial reaction time task. This deterministic grammar generates aperiodic but self‐similar sequences. The combination of these two properties allowed us to evaluate hierarchical learning while controlling for the use of low‐level strategies like detecting recurring patterns. The deterministic aspect of the grammar allowed us to predict precisely which points in the sequence should be subject to anticipation. Results showed that participants’ pattern of anticipation could not be accounted for by “flat” statistical learning processes and was consistent with them anticipating upcoming points based on hierarchical assumptions. We also found that participants were sensitive to the structure constituency, suggesting that they organized the signal into embedded constituents. We hypothesized that the participants built this structure by merging recursively deterministic transitions.

Publisher

Wiley

Subject

Artificial Intelligence,Cognitive Neuroscience,Experimental and Cognitive Psychology

Reference69 articles.

1. Bates D. Maechler M. Bolker B. &Walker S.(2014).Lme4: Linear mixed‐effects models using Eigen and S4. R package version 1.1‐7.https://doi.org/10.48550/arXiv.1406.5823access date “4th april 2021”

2. Logical structures in language

3. Syntactic Structures

4. The Neural Representation of Sequences: From Transition Probabilities to Algebraic Patterns and Linguistic Trees

5. Syntactic structure and artificial grammar learning: The learnability of embedded hierarchical structures

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3