Toward an improved estimation of flood frequency statistics from simulated flows

Author:

Hu Lanxin1,Nikolopoulos Efthymios I.2ORCID,Marra Francesco34,Anagnostou Emmanouil N.1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering University of Connecticut Storrs Connecticut USA

2. Department of Civil and Environmental Engineering Rutgers University New Brunswick New Jersey USA

3. Department of Geosciences University of Padova Padova Italy

4. Institute of Atmospheric Sciences and Climate National Research Council (CNR‐ISAC) Bologna Italy

Abstract

AbstractThe estimation of extreme flood frequency for ungauged or poorly gauged catchments is a longstanding problem of great practical importance. Simulated streamflow derived from distributed hydrological models can be used to address this issue, but their representation of extreme flood peaks is often prone to large biases. This study evaluates the potential of a nonasymptotic statistical approach able to consider all the independent flood peaks instead of extremes only, the Simplified Metastatistical Extreme Value (SMEV), for the estimation of extreme flood frequency from time series of simulated streamflow. We examined 28 years of simulated daily streamflow across the contiguous United States and compared SMEV to traditional statistical models based on annual maxima. Our results suggest that when its assumptions are met SMEV can moderate the impact of hydrological model biases in the quantification of extreme flood frequency. SMEV exhibits a lower relative difference between quantiles derived from observations and simulations for all return periods and forcing dataset. Quantiles estimated from simulated streamflow time series (28‐year records) using SMEV are usually in better agreement with the estimates based on 70‐year‐long observations. Geographical variations in the results of SMEV are noticed, with a better performance of SMEV in the east and west coasts (California, New England, and Mid‐Atlantic) and in the southwestern regions (Texas‐Gulf). These results indicate that the potential of SMEV for flood frequency analyses in ungauged and poorly gauged basins deserves further investigations.

Publisher

Wiley

Subject

Water Science and Technology,Safety, Risk, Reliability and Quality,Geography, Planning and Development,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3