A multi‐agent reinforcement learning model for maintenance optimization of interdependent highway pavement networks

Author:

Yao L.1,Leng Z.1,Jiang J.2,Ni F.2

Affiliation:

1. Department of Civil and Environmental Engineering The Hong Kong Polytechnic University Hung Hom Kowloon Hong Kong

2. Department of Highway and Railway Engineering, School of Transportation Southeast University Nanjing Jiangsu China

Abstract

AbstractPavement segments are functionally interdependent under traffic equilibrium, leading to interdependent maintenance and rehabilitation (M&R) decisions for different segments, but it has not received significant attention in the pavement management community yet. This study developed a maintenance optimization model for interdependent pavement networks based on the simultaneous network optimization (SNO) framework and a multi‐agent reinforcement learning algorithm. The established model was demonstrated on a highway pavement network in the real‐world, compared to a previously built two‐stage bottom‐up (TSBU) model. The results showed that, compared to TSBU, SNO produced a 3.0% reduction in total costs and an average pavement performance improvement of up to 17.5%. It prefers concentrated M&R schedules and tends to take more frequent preventive maintenance to reduce costly rehabilitation. The results of this research are anticipated to provide practitioners with quantitative estimates of the possible impact of ignoring segment interdependencies in M&R planning.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gradient boosting decision trees to study laboratory and field performance in pavement management;Computer-Aided Civil and Infrastructure Engineering;2024-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3