Modeling of spatially embedded networks via regional spatial graph convolutional networks

Author:

Fan Xudong1ORCID,Hackl Jürgen1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering Princeton University New Jersey USA

Abstract

AbstractEfficient representation of complex infrastructure systems is crucial for system‐level management tasks, such as edge prediction, component classification, and decision‐making. However, the complex interactions between the infrastructure systems and their spatial environments increased the complexity of network representation learning. This study introduces a novel geometric‐based multimodal deep learning model for spatially embedded network representation learning, namely the regional spatial graph convolutional network (RSGCN). The developed RSGCN model simultaneously learns from the node's multimodal spatial features. To evaluate the network representation performance, the introduced RSGCN model is used to embed different infrastructure networks into latent spaces and then reconstruct the networks. A synthetic network dataset, a California Highway Network, and a New Jersey Power Network were used as testbeds. The performance of the developed model is compared with two other state‐of‐the‐art geometric deep learning models, GraphSAGE and Spatial Graph Convolutional Network. The results demonstrate the importance of considering regional information and the effectiveness of using novel graph convolutional neural networks for a more accurate representation of complex infrastructure systems.

Funder

Princeton University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3