Crack pattern–based machine learning prediction of residual drift capacity in damaged masonry walls

Author:

Pereira Mauricio1,D'Altri Antonio Maria12,de Miranda Stefano2,Glisic Branko1

Affiliation:

1. Department of Civil and Environmental Engineering Princeton University New Jersey USA

2. Department of Civil, Chemical, Environmental, and Materials Engineering University of Bologna Bologna Italy

Abstract

AbstractIn this paper, we present a method based on an ensemble of convolutional neural networks (CNNs) for the prediction of residual drift capacity in unreinforced damaged masonry walls using as only input the crack pattern. We use an accurate block‐based numerical model to generate mechanically consistent crack patterns induced by external actions (earthquake‐like loads and differential settlements). For a damaged masonry wall, we extract the crack width cumulative distribution, we derive a crack width exceedance curve (CWEC), and we evaluate the drift loss (DL) with respect to the undamaged wall. Numerous pairs of CWEC and DL are thus generated and used for training (and validating) an ensemble of CNNs generated via repeated ‐folding cross validation with shuffling. As a result, a method for damage prognosis (Level IV of SHM) is provided. Such method appears general, inexpensive, and able to adequately predict the DL using as only input the CWEC, providing real‐time support for decision making in damaged masonry structures.

Publisher

Wiley

Reference53 articles.

1. Simulating masonry wall behaviour using a simplified micro-model approach

2. A plastic nonlocal damage model

3. Lattice Discrete Particle Model for the Simulation of Irregular Stone Masonry

4. Ash J. T. &Adams R. P.(2020).On warm‐starting neural network training. InH.Larochelle M.Ranzato R.Hadsell M. F.Balcan &H.Lin(Eds.) Proceedings of the 34th international conference on neural information processing systems NIPS'20 (pp.3884–3894).Curran Associates Inc.

5. Peak drift ratio estimation for unreinforced masonry walls using visual features of damage

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3