Snow‐ or ice‐covered road detection in winter road surface conditions using deep neural networks

Author:

Moroto Yuya1,Maeda Keisuke2,Ogawa Takahiro3,Haseyama Miki3

Affiliation:

1. Graduate School of Information Science and Technology Hokkaido University Hokkaido Japan

2. Data‐Driven Interdisciplinary Research Emergence Department Hokkaido University Hokkaido Japan

3. Faculty of Information Science and Technology Hokkaido University Hokkaido Japan

Abstract

AbstractTraffic accidents occur frequently in cold and snow‐ or ice‐covered regions due to weather changes that occur during the winter season. To detect the snow‐ or ice‐covered roads in road surface conditions, road surface images captured using fixed‐point cameras installed along the route are sufficient. This paper proposes a snow‐ or ice‐covered road detection method that uses the deep convolutional autoencoding Gaussian mixture model (DCAGMM) with structural similarity (SSIM). The DCAGMM method, which is an unsupervised anomaly detection method, is unaffected by imbalance in the training data. In addition, the end‐to‐end convolutional neural network implemented in the DCAGMM enables the capture of the unique characteristics of the road surface images. Finally, by reconstructing the input images as normal images, the comparison of the input and reconstructed images enables identification of snow‐ or ice‐covered road areas without requiring pixel‐level annotations. Furthermore, the road surface images include complex characteristics for reconstruction, and the SSIM‐based reconstruction error allows us to preserve the image quality of the reconstructed image. Experimental results obtained on real‐world road surface images demonstrate the effectiveness of the proposed method.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3