An efficient Bayesian method with intrusive homotopy surrogate model for stochastic model updating

Author:

Chen Hui12,Huang Bin13,Zhang Heng4,Xue Kaiyi1,Sun Ming1,Wu Zhifeng15

Affiliation:

1. School of Civil Engineering & Architecture Wuhan University of Technology Wuhan China

2. College of Post and Telecommunication Wuhan Institute of Technology Wuhan China

3. Hainan Institute of Wuhan University of Technology Sanya China

4. School of Urban Construction Yangtze University Jingzhou China

5. School of Civil and Hydraulic Engineering Huazhong University of Science and Technology Wuhan China

Abstract

AbstractThis paper proposes a new stochastic model updating method based on the homotopy surrogate model (HSM) and Bayesian sampling. As a novel intrusive surrogate model, the HSM is established by the homotopy stochastic finite element (FE) method. Then combining the advanced delayed‐rejection adaptive Metropolis–Hastings sampling technology with HSM, the structural FE model can be updated by uncertain measurement modal data. The numerical results show that the updating effectiveness of the proposed method is better than that of the Bayesian methods with the non‐intrusive surrogate models, such as stochastic response surface model and Kriging model. Compared to the Bayesian method with the intrusive second‐order perturbation model, the updating results of the proposed method are more accurate, especially when the fluctuation of the uncertain measured data is large and the stiffness of the structure significantly changes. The model updating results of a cable‐stayed bridge show that the statistic modal properties of the updated bridge model have a very good agreement with the uncertain measurement modal data.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3