Brief versus long maternal separation in lactating rats: Consequences on maternal behavior, emotionality, and brain oxytocin receptor binding

Author:

Demarchi Luisa1ORCID,Sanson Alice1ORCID,Bosch Oliver J.1ORCID

Affiliation:

1. Department of Behavioural and Molecular Neurobiology, Regensburg Center for Neuroscience University of Regensburg Regensburg Germany

Abstract

AbstractMaternal separation is a widely used animal model to study early life adversity in offspring. However, only a few studies have focused on the impact of disrupting the maternal bond from the mother's perspective. Such studies reveal alterations in behavior, whereas the underlying neuroendocrine mechanisms remain largely unknown. In this study, we compared the consequences of daily brief maternal separation (BMS; 15 min) versus long maternal separation (LMS; 180 min) during the first week postpartum with respect to behavioral and neuroendocrine changes in lactating Sprague–Dawley dams. Mothers were tested for their maternal care before and after separation, maternal motivation to retrieve pups, as well as anxiety‐related and stress‐coping behaviors. In addition, we analyzed their basal plasma corticosterone levels and oxytocin receptor binding in selected brain regions of the limbic system and maternal network. LMS dams showed higher levels of behavioral alterations compared to BMS and non‐maternally separated (NMS) dams, including increased licking and grooming of the pups and decreased maternal motivation. Anxiety‐related behavior was not affected by either separation paradigm, whereas passive stress‐coping behavior tended to increase in the LMS group. Plasma corticosterone concentrations were not different between groups. Oxytocin receptor binding was higher in the medial preoptic area and tended to be higher in the prelimbic cortex of LMS dams, only. Our results demonstrate that especially daily prolonged maternal separation impacts on the mothers' behavior and oxytocin system, which suggests that enhanced oxytocin receptor binding could be a compensatory mechanism for potentially decreased central oxytocin release due to limited pup contact.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Cellular and Molecular Neuroscience,Endocrine and Autonomic Systems,Endocrinology,Endocrinology, Diabetes and Metabolism

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3