The emerging key role of reactive sulfur species in abiotic stress tolerance in plants

Author:

Alvi Ameena Fatima1,Iqbal Noushina2,Albaqami Mohammed3,Khan Nafees A.1ORCID

Affiliation:

1. Plant Physiology and Biochemistry Laboratory, Department of Botany Aligarh Muslim University Aligarh India

2. Department of Botany Jamia Hamdard New Delhi India

3. Botany and Microbiology Department, College of Science King Saud University Riyadh Saudi Arabia

Abstract

AbstractIn plants, sulfur plays a critical role in the formation of important biomolecules such as cysteine, methionine, and tripeptide glutathione. Thiol groups, composed of sulfur, are essential to numerous metabolic processes. The easy and reversible oxidation and reduction of thiol groups have drawn attention to the redox regulation of cellular metabolism. Reactive sulfur species (RSS), including hydrogen sulfide (H2S), persulfides, and polysulfides, are synthetized in all living organisms, mainly from cysteine, and have been recognized in the last two decades as very important molecules in redox regulation. RSS are considered potent signaling molecules, being involved in the regulation of virtually all aspects of cell function. With regard to stress, reactive species and the antioxidant machinery maintain a delicate balance that gets disturbed under stress conditions, wherein reactive species biosynthesis, transportation, scavenging, and overall metabolism become decisive for plant survival. While reactive oxygen and nitrogen species have been much discussed over recent years, research into RSS biosynthesis, signaling, and relation to abiotic stresses is still nascent. RSS evolved long before reactive oxygen species, and because both are metabolized by catalase, it has been suggested that “antioxidant” enzymes originally evolved to regulate RSS and may still do so today. In this review, we have tried to summarize the generation, signaling, and interaction of RSS in plant systems and to discuss in detail the roles under various abiotic stresses.

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics,General Medicine,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3