A chromosome‐level genome assembly of radish (Raphanus sativus L.) reveals insights into genome adaptation and differential bolting regulation

Author:

Xu Liang1,Wang Yan1,Dong Junhui1,Zhang Wei12,Tang Mingjia1,Zhang Weilan1,Wang Kai3,Chen Yinglong4,Zhang Xiaoli1,He Qing1,Zhang Xinyu1,Wang Kai1,Wang Lun2,Ma Yinbo2,Xia Kai1,Liu Liwang12ORCID

Affiliation:

1. National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China) of MOAR, College of Horticulture Nanjing Agricultural University Nanjing China

2. College of Horticulture and Landscape Architecture Yangzhou University Yangzhou China

3. School of Life Sciences Nantong University Nantong China

4. The UWA Institute of Agriculture, and School of Agriculture and Environment The University of Western Australia Perth WA Australia

Abstract

SummaryHigh‐quality radish (Raphanus sativus) genome represents a valuable resource for agronomical trait improvements and understanding genome evolution among Brassicaceae species. However, existing radish genome assembly remains fragmentary, which greatly hampered functional genomics research and genome‐assisted breeding. Here, using a NAU‐LB radish inbred line, we generated a reference genome of 476.32 Mb with a scaffold N50 of 56.88 Mb by incorporating Illumina, PacBio and BioNano optical mapping techniques. Utilizing Hi‐C data, 448.12 Mb (94.08%) of the assembled sequences were anchored to nine radish chromosomes with 40 306 protein‐coding genes annotated. In total, 249.14 Mb (52.31%) comprised the repetitive sequences, among which long terminal repeats (LTRs, 30.31%) were the most abundant class. Beyond confirming the whole‐genome triplication (WGT) event in R. sativus lineage, we found several tandem arrayed genes were involved in stress response process, which may account for the distinctive phenotype of high disease resistance in R. sativus. By comparing against the existing Xin‐li‐mei radish genome, a total of 2 108 573 SNPs, 7740 large insertions, 7757 deletions and 84 inversions were identified. Interestingly, a 647‐bp insertion in the promoter of RsVRN1 gene can be directly bound by the DOF transcription repressor RsCDF3, resulting into its low promoter activity and late‐bolting phenotype of NAU‐LB cultivar. Importantly, introgression of this 647‐bp insertion allele, RsVRN1In‐536, into early‐bolting genotype could contribute to delayed bolting time, indicating that it is a potential genetic resource for radish late‐bolting breeding. Together, this genome resource provides valuable information to facilitate comparative genomic analysis and accelerate genome‐guided breeding and improvement in radish.

Funder

National Natural Science Foundation of China

Jiangsu Agricultural Science and Technology Innovation Fund

Jiangsu Agriculture Research System

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3