Novel insights into minipuberty and GnRH: Implications on neurodevelopment, cognition, and COVID‐19 therapeutics

Author:

Chachlaki Konstantina12,Le Duc Kevin23,Storme Laurent23,Prevot Vincent12ORCID

Affiliation:

1. Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain Lille Neuroscience & Cognition, UMR_S1172 Lille France

2. Univ. Lille, Inserm, CHU Lille Hospital‐University Federation (FHU) 1000 First Days of Life Lille France

3. CHU Lille, Neonatology Department Jeanne de Flandres Hospital Lille France

Abstract

AbstractIn humans, the first 1000 days of life are pivotal for brain and organism development. Shortly after birth, gonadotropin‐releasing hormone (GnRH) neurons in the hypothalamus are activated, a phenomenon known as minipuberty. This phenomenon, observed in all mammals studied, influences the postnatal development of the hypothalamic–pituitary–gonadal (HPG) axis and reproductive function. This review will put into perspective the results of recent studies showing that the impact of minipuberty extends beyond reproductive function, influencing sensory and cognitive maturation. Studies in mice have revealed the role of nitric oxide (NO) in regulating minipuberty amplitude, with NO deficiency linked to cognitive and olfactory deficits. Additionally, findings indicate that cognitive and sensory defects in adulthood in a mouse model of Down syndrome are associated with an age‐dependent decline of GnRH production, whose origin can be traced back to minipuberty, and point to the potential therapeutic role of pulsatile GnRH administration in cognitive disorders. Furthermore, this review delves into the repercussions of COVID‐19 on GnRH production, emphasizing potential consequences for neurodevelopment and cognitive function in infected individuals. Notably, GnRH neurons appear susceptible to SARS‐CoV‐2 infection, raising concerns about potential long‐term effects on brain development and function. In conclusion, the intricate interplay between GnRH neurons, GnRH release, and the activity of various extrahypothalamic brain circuits reveals an unexpected role for these neuroendocrine neurons in the development and maintenance of sensory and cognitive functions, supplementing their established function in reproduction. Therapeutic interventions targeting the HPG axis, such as inhaled NO therapy in infancy and pulsatile GnRH administration in adults, emerge as promising approaches for addressing neurodevelopmental cognitive disorders and pathological aging.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3