Ca2+ deficiency triggers panicle degeneration in rice mediated by Ca2+/H+ exchanger OsCAX1a

Author:

Gan Quan12,Song Fengshun12,Zhang Chuanzhong3,Han Zhongmin3,Teng Bin12,Lin Cuixiang12,Gu Dongfang12,Wang Jiajia4,Pei Huan4,Wu Ji4,Fang Jun3ORCID,Ni Dahu12

Affiliation:

1. Rice Research Institute Anhui Academy of Agricultural Sciences Hefei China

2. Key Laboratory of Rice Genetics and Breeding in Anhui Province Hefei China

3. Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology Chinese Academy of Sciences Harbin China

4. Soil and Fertilizer Research Institute Anhui Academy of Agricultural Sciences Hefei China

Abstract

AbstractIncreasing rice yield has always been one of the primary objectives of rice breeding. However, panicle degeneration often occurs in rice‐growing regions and severely curbs rice yield. In this study, we obtained a new apical panicle degeneration mutant, which induces a marked degeneration rate and diminishes the final grain yield. Cellular and physiological analyses revealed that the apical panicle undergoes programmed cell death, accompanied by excessive accumulations of peroxides. Following, the panicle degeneration gene OsCAX1a was identified in the mutant, which was involved in Ca2+ transport. Hydroponics assays and Ca2+ quantification confirmed that Ca2+ transport and distribution to apical tissues were restricted and over‐accumulated in the mutant sheath. Ca2+ transport between cytoplasm and vacuole was affected, and the reduced Ca2+ content in the vacuole and cell wall of the apical panicle and the decreased Ca2+ absorption appeared in the mutant. RNA‐Seq data indicated that the abnormal CBL (calcineurin b‐like proteins) pathway mediated by deficient Ca2+ might occur in the mutant, resulting in the burst of ROS and programmed cell death in panicles. Our results explained the key role of OsCAX1a in Ca2+ transport and distribution and laid a foundation to further explore the genetic and molecular mechanisms of panicle degeneration in rice.

Funder

Natural Science Foundation of Anhui Province

Publisher

Wiley

Subject

Plant Science,Physiology

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3