Petrochronologic constraints on inverted metamorphism, terrane accretion, thrust stacking, and ductile flow in the Gneiss Dome belt, northern Appalachian orogen

Author:

Hillenbrand Ian W.1ORCID,Williams Michael L.1ORCID,Peterman Emily M.2ORCID,Jercinovic Michael J.1ORCID,Dietsch Craig W.3ORCID

Affiliation:

1. Department of Earth, Geographic, and Climate Sciences University of Massachusetts Amherst Amherst Massachusetts USA

2. Department of Earth and Oceanographic Science Bowdoin College Brunswick Maine USA

3. Department of Geosciences University of Cincinnati Cincinnati Ohio USA

Abstract

AbstractGneiss domes are an integral element of many orogenic belts and commonly provide tectonic windows into deep crustal levels. Gneiss domes in the New England segment of the Appalachian orogen have been classically associated with diapirism and fold interference, but alternative models involving ductile flow have been proposed. We evaluate these models in the Gneiss Dome belt of western New England with U‐Th‐Pb monazite, xenotime, zircon, and titanite petrochronology and major and trace element thermobarometry. These data constrain distinct pressure–temperature–time (P‐T‐t) paths for each unit in the gneiss dome belt tectono‐stratigraphy. The structurally lowest units, Laurentia‐derived migmatitic gneisses of the Waterbury dome, document two stages of metamorphism (455–435 and 400–370 Ma) with peak Acadian metamorphic conditions of ~1.0–1.2 GPa at 750–780°C at 391 ± 7 to 386 ± 4 Ma. The next structurally higher unit, the Gondwana‐derived Taine Mountain Formation, records Taconic (peak conditions: 0.6 GPa, 600°C at 441 ± 4 Ma) and Acadian (peak: 0.8–1.0 GPa, 650°C at 377 ± 4 Ma) metamorphism. The overlying Collinsville Formation yielded a 473 ± 5 Ma crystallization age and evidence for metamorphic conditions of 650°C at 436 ± 4 Ma and 1.2–1.0 GPa, 750–775°C at 397 ± 4 to 385 ± 6 Ma. The structurally higher Sweetheart Mountain Member of the Collinsville Formation yielded only Acadian zircon, monazite, and xenotime dates and evidence for high‐pressure granulite facies metamorphism (1.8 GPa, 815°C) at circa 380–375 Ma. Cover rocks of the dome‐mantling The Straits Schist records peak conditions of ~1 GPa, 700°C at 386 ± 6 to 380 ± 4 Ma. Garnet breakdown to monazite and/or xenotime occurred in all units at circa 375–360 and 345–330 Ma. Peak Acadian metamorphic pressures increase systematically from the structurally lowest to highest units (from 1.0 to 1.8 GPa). This inverted metamorphic sequence is incompatible with the diapiric and fold interference models, which predict the highest pressures at the structurally lowest levels. Based upon P‐T‐t and structural data, we prefer a model involving, first, circa 380 Ma thrust stacking followed by syn‐collisional orogen parallel extension, ductile flow, and rise of the domes between 380 and 365 Ma. Garnet breakdown at circa 345–330 Ma is interpreted to reflect further exhumation during collapse of the Acadian orogenic plateau. These results highlight the power of integrating petrologic constraints with paired geochemical and geochronologic data from multiple chronometers to test structural and tectonic models and show that syn‐convergent orogen parallel ductile flow dramatically modified earlier accretion‐related structures in New England. Further, the Gneiss Dome belt documents gneiss dome development in a syn‐collisional, thick crust setting, providing an ancient example of middle to lower crustal processes that may be occurring today in the modern Himalaya and Pamir Range.

Funder

National Science Foundation

Geological Society of America

University of Massachusetts Amherst

Publisher

Wiley

Subject

Geochemistry and Petrology,Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3