Multilayer diffusion networks as a tool to assess the structure and functioning of fine grain sub‐specific plant–pollinator networks

Author:

Allen‐Perkins Alfonso12ORCID,Hurtado María3ORCID,García‐Callejas David45ORCID,Godoy Oscar13ORCID,Bartomeus Ignasi1ORCID

Affiliation:

1. Departamento de Ecología y Evolución, Estación Biológica de Doñana, EBD‐CSIC Seville Spain

2. Departamento de Ingeniería Eléctrica, Electrónica, Automática y Física Aplicada, ETSIDI, Universidad Politécnica de Madrid Madrid Spain

3. Departamento de Biología, Instituto Universitario de Investigación Marina (INMAR), Universidad de Cádiz Puerto Real Spain

4. Centre for Integrative Ecology, School of Biological Sciences, University of Canterbury Christchurch Aotearoa New Zealand

5. Manaaki Whenua‐Landcare Research Lincoln Aotearoa New Zealand

Abstract

Interaction networks are a widely used tool to understand the dynamics of plant–pollinator ecological communities. However, while most mutualistic networks have been defined at the species level, ecological processes such as pollination take place at different scales, including the individual or patch levels. Yet, current approaches studying fine‐grain sub‐specific plant–pollinator networks only account for interactions among nodes belonging to a single plant species due to the conceptual and mathematical limitations of modeling simultaneously several plant species each composed of several nodes. Here, we introduce a multilayer diffusion network framework that allows modeling simple diffusion processes between nodes pertaining to the same or different layers (i.e. species). It is designed to depict from the network structure the potential conspecific and heterospecific pollen flows among plant individuals or patches. This potential pollen flow is modeled as a transport‐like system, in which pollen grain movements are represented as random‐walkers that diffuse on an ensemble of bipartite layers of conspecific plants and their shared pollinators. We exemplify this physical conceptualization using a dataset of nine fine‐grain sub‐specific plant–pollinator networks from a Mediterranean grassland of annual plants, where plant nodes represent groups of conspecifics within patches of 1 m2. The diffusion networks show pollinators effectively connecting sets of patches of the same and different plant species, forming a modular structure. Interestingly, different properties of the network structure, such as the conspecific pollen arrival probability and the number of conspecific subgraphs in which plants are embedded, are critical for the seed production of different plant species. We provide a simple but robust set of metrics to calculate potential pollen flow and scale down network ecology to functioning properties at the individual or patch level, where most ecological processes take place, hence moving forward the description and interpretation of species‐rich communities across scales.

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3