Culturable and metagenomic approaches of wheat bran and wheat straw phyllosphere’s highlight new lignocellulolytic microorganisms

Author:

Besaury L.1ORCID,Rémond C.1

Affiliation:

1. Université de Reims Champagne Ardenne, INRAE, FARE Reims France

Abstract

Abstract The phyllosphere, defined as the aerial parts of plants, is one of the most prevalent microbial habitats on earth. The microorganisms present on the phyllosphere can have several interactions with the plant. The phyllosphere represents then a unique niche where microorganisms have evolved through time in that stressful environment and may have acquired the ability to degrade lignocellulosic plant cell walls in order to survive to oligotrophic conditions. The dynamic lignocellulolytic potential of two phyllospheric microbial consortia (wheat straw and wheat bran) has been studied. The microbial diversity rapidly changed between the native phyllospheres and the final degrading microbial consortia after 48 h of culture. Indeed, the initial microbial consortia was dominated by the Ralstonia (35·8%) and Micrococcus (75·2%) genera for the wheat bran and wheat straw whereas they were dominated by Candidatus phytoplasma (59%) and Acinetobacter (31·8%) in the final degrading microbial consortia respectively. Culturable experiments leading to the isolation of several new lignocellulolytic isolates (belonging to Moraxella and Atlantibacter genera) and metagenomic reconstruction of the microbial consortia highlighted the existence of an unpredicted microbial diversity involved in lignocellulose fractionation but also the existence of new pathways in known genera (presence of CE2 for Acinetobacter, several AAs for Pseudomonas and several GHs for Bacillus in different metagenomes-assembled genomes). The phyllosphere from agricultural co-products represents then a new niche as a lignocellulolytic degrading ecosystem.

Funder

French Region Grand Est, Grand Reims and the European Regional Development Fund.

Publisher

Oxford University Press (OUP)

Subject

Applied Microbiology and Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3