Detecting reed canary grass (Phalaris arundinacea L.) patches from UAV‐based digital surface model images—A case study in a timothy (Phleum pretense L.) meadow field

Author:

Yoshitoshi Rena1ORCID,Sakanoue Seiichi2,Watanabe Nariyasu3

Affiliation:

1. Research Center for Agricultural Robotics National Agriculture and Food Research Organization Tsukuba Japan

2. Hokkaido Agricultural Research Center National Agriculture and Food Research Organization Sapporo Japan

3. Western Region Agricultural Research Center National Agriculture and Food Research Organization Oda Japan

Abstract

AbstractAccurate determination of the weed ratio in artificial meadows is critical for efficient pasture renovation. Reed canary grass (Phalaris arundinacea L., RCG) is treated as a troublesome grass in the Hokkaido region of Japan because of its low feed quality and poor palatability in dairy farming. In the present study, we examined a method of identifying the dominant area of RCG in timothy (Phleum pretense L.) meadows by applying the Canny method to unmanned aerial vehicle (UAV)‐based digital surface model (DSM) images. Comparing the actual RCG patches observed in a field survey (50 m quadrats × 4 places) with the predicted patches, the pixel‐based recall and F value were 0.90 and 0.83, respectively. These results demonstrated that the area of RCG can be detected using a simple method without supervised data or deep learning. This study is expected to be utilized in a wide variety of applications using relative height differences.

Funder

Bio-oriented Technology Research Advancement Institution

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3