HOS1 promotes plant tolerance to low‐energy stress via the SnRK1 protein kinase

Author:

Margalha Leonor1ORCID,Elias Alexandre1ORCID,Belda‐Palazón Borja1ORCID,Peixoto Bruno1ORCID,Confraria Ana1ORCID,Baena‐González Elena1ORCID

Affiliation:

1. Instituto Gulbenkian de Ciência, 2780‐156 Oeiras, Portugal and GREEN‐IT Bioresources for Sustainability ITQB NOVA 2780‐157 Oeiras Portugal

Abstract

SUMMARYPlants need to integrate internal and environmental signals to mount adequate stress responses. The NUCLEAR PORE COMPLEX (NPC) component HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENES 1 (HOS1) is emerging as such an integrator, affecting responses to cold, heat, light, and salinity. Stress conditions often converge in a low‐energy signal that activates SUCROSE NON‐FERMENTING 1‐RELATED KINASE 1 (SnRK1) to promote stress tolerance and survival. Here, we explored the role of HOS1 in the SnRK1‐dependent response to low‐energy stress in Arabidopsis thaliana, using darkness as a treatment and a combination of genetic, biochemical, and phenotypic assays. We show that the induction of starvation genes and plant tolerance to prolonged darkness are defective in the hos1 mutant. HOS1 interacts physically with the SnRK1α1 catalytic subunit in yeast two‐hybrid assays and in planta, and the nuclear accumulation of SnRK1α1 is reduced in the hos1 mutant. Likewise, another NPC mutant, nup160, exhibits lower activation of starvation genes and decreased tolerance to prolonged darkness. Importantly, defects in low‐energy responses in the hos1 background are rescued by fusing SnRK1α1 to a potent nuclear localization signal or by sugar supplementation during the dark treatment. Altogether, this work demonstrates the importance of HOS1 for the nuclear accumulation of SnRK1α1, which is key for plant tolerance to low‐energy conditions.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Wiley

Subject

Cell Biology,Plant Science,Genetics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3