Affiliation:
1. Department of Biology School of Sciences, Razi University Kermanshah Iran
Abstract
AbstractBackgroundCellular communication and signaling pathways are fundamental regulators of stem cell and cancer cell behaviors. This review explores the intricate interplay of these pathways in governing cellular behaviors, focusing on their implications for diseases, particularly cancer.ObjectivesThis comprehensive review aims to elucidate the significance of cellular signaling pathways in regulating the behavior of stem cells and cancer cells. It delves into the alterations in these pathways, their impact on cell fate, and their implications for developing diseases, notably cancer. The objective is to underscore the importance of understanding these signaling pathways for developing targeted therapeutic strategies.MethodsThe review critically analyzes existing literature and research findings concerning the roles of signaling pathways in stem cell behavior regulation, emphasizing their parallels and disparities in cancer cells. It synthesizes information on both direct and indirect modes of cell communication to delineate the complexity of signaling networks.ResultsDirect and indirect modes of cell communication intricately regulate the complex signaling pathways governing stem cell behaviors, influencing differentiation potential and tissue regeneration. Alterations in these pathways significantly impact stem cell fate, contributing to disease pathogenesis, including cancer. Understanding these signaling cascades offers insights into developing targeted therapies, particularly cancer treatment.ConclusionUnderstanding the regulation of signaling pathways in stem cells and the specialized subset of cancer stem cells holds promise for innovative therapeutic approaches. By targeting aberrant signaling pathways, tailored interventions may improve treatment outcomes. This review underscores the critical role of signaling pathways in cellular behaviors, offering a pathway toward developing novel, more effective therapies for diverse diseases and disorders.