1. (1) A. E. Ezugwu, V. Pillay, D. Hirasen, K. Sivanarain, and M. Govender : “A Comparative Study of Meta-Heuristic Optimization Algorithms for 0-1 Knapsack Problem: Some Initial Results”, IEEE Access, Vol. 7, pp. 43979-44001 (2019)
2. (2) C. B. Browne, E. Powley, et al.: “A Survey of Monte Carlo Tree Search Methods”, IEEE Transactions on Computational Intelligence and AI in Games, Vol. 4, No. 1, pp. 1-43 (2012)
3. (3) D. Silver, J. Schrittwieser, et al.: “Mastering the game of Go without human knowledge”, Nature, Vol. 550, pp. 354-359 (2017)
4. (4) N. R. Sabar and G. Kendall : “Population based Monte Carlo tree search hyper-heuristic for combinatorial optimization problems”, Information Sciences, Vol. 314, pp. 225-239 (2014)
5. (5) T. Neto, M. Constantino, I. Martins, and J. P. Pedroso : “A multi-objective Monte Carlo tree search for forest harvest scheduling”, European Journal of Operational Research, Vol. 282, No. 3, pp. 1115-1126 (2020)