Abstract
Xylanases are widely produced by fungi, and the production of polysaccharide-degrading enzymes, in general, are usually subjected to carbon catabolite repression. In this work, the ability of several Indonesian indigenous fungi to produce endo-xylanase and β-xylosidase and their responses to glucose as a repressor were determined. Ten fungi were grown in a liquid medium supplemented with glucose as the repressor (0, 1%, 3%, and 5%), and the endo-xylanase and β-xylosidase productions were assayed. Aspergillus aculeatus FIG1 and A. oryzae KKB4 produced 3.85 and 0.70 U/mL of endo-xylanase, respectively, compared with other strains (0.22 U/mL or less). Trichoderma asperellum PK1J2, T. virens MLT2J2, A. aculeatus FIG1, T. asperellum MLT5J1, A. oryzae KKB4, and T. asperellum MLT3J2 produced 0.021–0.065 U/mL of β-xylosidase, whereas the other strains produced 0.013 U/mL or less of β-xylosidase. Adding 1% glucose to the growth medium can partially repress endo-xylanase production in A. aculeatus FIG1, T. asperellum PK1J2, and T. virens MLT4J1 and completely repress other strains. By adding 1% glucose, strains FIG1, PK1J2, and MLT4J1 suffered almost complete repression of β-xylosidase production, although such strains exhibited partial repression of endo-xylanase production. β-Xylosidase produced by the other strains showed complete repression by adding 1% glucose, except for A. aculeatus FIG1, A. tamarii FNCC 6151, and T. asperellum MLT1J1, which showed partial repression. Therefore, adding 3% glucose to the growth medium can result in complete repression of endo-xylanase and β-xylosidase productions in all strains examined.
Publisher
Journal of Pure and Applied Microbiology
Subject
Applied Microbiology and Biotechnology,Microbiology,Biotechnology
Reference39 articles.
1. 1. Kumar D, Kumar SS, Kumar J, et al. Xylanases and their industrial applications: A review. Biochem Cell Arch. 2017;17(1):353-360.
2. 2. Goswani GK, Rawat S. Microbial xylanase and their applications. Int J Curr Res Acad Rev. 2015;3(6):436-450.
3. 3. Sathish T, Murthy NYS. Optimisation of xylose production using xylanase. Int J Chem Sci. 2010;8(2):909-913.
4. 4. Butt MS, Tahir-Nadeem M, Ahmad Z, Sultan MT. Xylanases and their applications in baking industry. Food Technol Biotechnol. 2008;46(1):22-31.
5. 5. Mikus L, Dodok L, Kovacova M, Staruch L, Koman V. Bakery enzymes in cereal technologies. Potravinarstvo. 2012;6(3):10-15. doi: 10.5219/193