Macroalgae Bioactive Compounds for the Potential Antiviral of SARS-CoV-2: An In Silico Study

Author:

Padmi Hasriaton,Kharisma Viol DheaORCID,Ansori Arif Nur MuhammadORCID,Sibero Mada TriandalaORCID,Widyananda Muhammad Hermawan,Ullah Md. Emdad,Gumenyuk OlgaORCID,Chylichcova SvetlanaORCID,Bratishko NataliaORCID,Prasedya Eka SunarwidhiORCID,Sucipto Teguh HariORCID,Zainul RahadianORCID

Abstract

Coronavirus disease (COVID-19), which was due to novel coronavirus was detected in December 2019 in Wuhan, China for the first time and spread rapidly became a global pandemic. This study aimed to predict the potential of macroalgae compounds as SARS-CoV-2 antiviral by inhibiting of ACE2 receptor through in silico approach. Twenty-seven macroalgae compounds were obtained from PubChem (NCBI, USA), while target protein ACE2 receptor was collected from Protein Data Bank (PDB). Then the initial screening study drug-likeness conducted by Lipinski rule of five web server and prediction of bioactive probability carried out by PASS (Prediction of activity spectra for biologically active substances) Online web server. After those compounds were approved by Lipinski’s rule of five and PASS online prediction web server, the blind docking simulation was performed using PyRx 0.8 software to show binding energy value. Molecular interaction analysis was done using BIOVIA Discovery Studio 2016 v16.1.0 and PyMOL v2.4.1 software. There are six macroalgae compounds approved by Lipinski’s rule of five and PASS Online Analysis. The result is that macroalgae compound siphonaxanthin among 27 macroalgae compound showed strong binding energy to bind ACE2 receptor with -8.8 kcal/mol. This study also used the SARS-CoV-2 drugs as positive control: remdesivir, molnupiravir, baricitinib, lopinavir, oseltamivir, and favipiravir. The result shows that siphonaxanthin has lowest binding energy than the common SARS-CoV-2 drug. Macroalgae compounds are predicted to have potential as SARS-CoV-2 antiviral. Thus, extension studies need to investigate by in vitro and in vivo analysis for confirmation the siphonaxanthin’s inhibitory activity in combat SARS-CoV-2.

Publisher

Journal of Pure and Applied Microbiology

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3