Quorum Sensing Orchestrates Antibiotic Drug Resistance, Biofilm Formation, and Motility in Escherichia coli and Quorum Quenching Activities of Plant-derived Natural Products: A Review

Author:

Cabuhat Kevin Smith PunoORCID,Moron-Espiritu Llewelyn SottoORCID

Abstract

Quorum sensing (QS) is a type of cell-to-cell communication that is influenced by an increase in signaling molecules known as autoinducers, which is correlated to the increase in the density of microbial communities. In this review, we aim to discuss and provide updates on the different signaling molecules used by Escherichia coli, such as acyl-homoserine lactone (AHL), autoinducer-2 (AI-2), and indole to influence key phenotypes such as antibiotic drug resistance, biofilm formation, and motility during quorum sensing. Based on the literature, E. coli signaling molecules have different functions during cell-to-cell communication such that the increase in AHL and indole was found to cause the modulation of antibiotic resistance and inhibition of biofilm formation and motility. Meanwhile, AI-2 is known to modulate biofilm formation, antibiotic resistance, and motility. On the other hand, in the existing literature, we found that various plants possess phytochemicals that can be used to alter QS and its downstream key phenotypes such as biofilm formation, swimming and swarming motility, and genes related to motility, curli and AI-2 production. However, the exact physiological and molecular mechanisms of these natural compounds are still understudied. Understanding the mechanisms of those phytochemicals during QS are therefore highly recommended to conduct as a necessary step for future scholars to develop drugs that target the actions of QS-signaling molecules and receptors linked to antibiotic resistance, biofilm formation, and motility without putting bacteria under stress, thereby preventing the development of drug resistance.

Publisher

Journal of Pure and Applied Microbiology

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3