Comparison of the Antagonistic Potential of the Entomopathogenic Bacterium Serratia nematodiphila GCSR38 with other Effective Microorganisms for the Control of Rice Bacterial Leaf Blight

Author:

Sutthisa WarapornORCID

Abstract

The efficacy of antagonistic microorganisms and secondary metabolites of entomopathogenic bacteria was evaluated in vitro and in vivo against Xanthomonas oryzae pv. oryzae (Xoo), a causal agent of rice bacterial leaf blight. The effect of the culture filtrates of the microorganisms was tested against Xoo, using the agar well diffusion assay. Trichoderma sp. UB05/3 was the most effective against Xoo. However, the results were not statistically different from those of the entomopathogenic bacterium Serratia nematodiphila GCSR38 with a 22.97 mm and 19.15 mm zone of inhibition, respectively. The effect of the secondary metabolite crude extracts of antagonistic microorganisms (2,000 µg/ml) on Xoo inhibition was tested by the paper disc diffusion method. Only S. nematodiphila GCSR38 was able to control Xoo, with an inhibition zone of 17.60 mm. Minimum inhibitory concentration (MIC) was determined using a 96-well microtiter plate. The MIC of secondary metabolites crude extracts of S. nematodiphila GCSR38 was 1,000 µg/ml and the minimum bactericidal concentration (MBC) was 1,000 µg/ml. The efficacy of the secondary metabolite crude extract of S. nematodiphila GCSR38 against Xoo was tested using the detached leaf technique; the secondary metabolite crude extracts controlled the disease, with 24.45% and 15.56% disease severity when used before and after inoculation with Xoo, respectively. Inoculation with Xoo alone resulted in a disease severity of 44.45%. The secondary metabolite crude extracts of S. nematodiphila GCSR38 can reduce disease severity of bacterial leaf blight in rice by 28.89%, whereas zinc thiazole causes a disease severity of 22.22% and Xoo alone causes a disease severity of 66.67%.

Publisher

Journal of Pure and Applied Microbiology

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3