Abstract
Recent studies have documented an increase in the incidence of antifungal resistance in newly emerging species closely related to C. albicans, and the coexistence of genotypic variants. Hence, an application of PCR-based molecular typing is crucial in identifying these fungi. Our study used molecular methods to characterize the latest genotypic subgroups of C. albicans and analysed if there was a relationship between the genotypes and the antifungal resistance pattern. The study was conducted in JSS Hospital, Mysuru, Karnataka between July 2018 and December 2020. A total of 1427 Candida species were isolated from clinical samples. Candida albicans were isolated and confirmed using Germ tube test, ID VITEK 2 and PCR (ITS primer). DNA extraction was done using the Hi-Media Yeast DNA Extraction Kit. The amplified products were analysed using Agarose gel electrophoresis (2%). Among 1427 Candida species, 282 were Candida albicans. The following resistance was exhibited to major antifungals – Caspofungin (3.5%), Amphotericin B (1.4%), flucytosine (2.8%) Fluconazole (6%) Micafungin (2.8%) Voriconazole (3.1%) and all were sensitive to miconazole. ABC genotyping showed Genotype A (450 bp) predominant (87.58%) followed by genotype B (840bp) (9.92 %) and genotype C (450bp and 840 bp) (0.2%). Genotype D and E were not observed. Our study showed the growing antifungal resistance in clinical isolates. Genotype A was predominant in South Karnataka region followed by Genotype B and C. There was no correlation between genotyping and antifungal resistance. However, a study with greater number of samples from diverse geographical locations may give more insight.
Publisher
Journal of Pure and Applied Microbiology
Subject
Applied Microbiology and Biotechnology,Microbiology,Biotechnology
Reference40 articles.
1. 1. Pfaller MA, Messer SA, Moet GJ, Jones RN, Castanheira M. Candida bloodstream infections: Comparison of species distribution and resistance to echinocandin and azole antifungal agents in Intensive Care Unit (ICU) and non-ICU settings in the SENTRY Antimicrobial Surveillance Program (2008-2009). Int J Antimicrob Agents. 2011;38(1):65-69. doi: 10.1016/j.ijantimicag.2011.02.016
2. 2. Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Mendes Giannini MJS. Candida species: Current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol. 2013;62(1):10-24. doi: 10.1099/jmm.0.045054-0
3. 3. Pappas PG, Kauffman CA, Andes DR, et al. Clinical Practice Guideline for the Management of Candidiasis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis. 2015;62(4):e1-e50. doi: 10.1093/cid/civ933
4. 4. Chakrabarti A, Mohan B, Shrivastava SK, Marak RSK, Ghosh A, Ray P. Change in distribution & antifungal susceptibility of Candida species isolated from candidaemia cases in a tertiary care centre during 1996-2000. Indian J Med Res. 2002;116:5-12. http://www.ncbi.nlm.nih.gov/pubmed/12514972.
5. 5. Pfaller MA, Diekema DJ. Epidemiology of invasive candidiasis: A persistent public health problem. Clin Microbiol Rev. 2007;20(1):133-163. doi: 10.1128/CMR.00029-06
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献