Differential Laccase Production among Diverse Fungal Endophytes in Aquatic Plants of Hulimavu Lake in Bangalore, India

Author:

Jayaram SaranyaORCID,Biswas SomaORCID,Philip IndhuORCID,Umesh MridulORCID,Sarojini SumaORCID

Abstract

The ability of plants to acclimatise and thrive in stressed environments can be attributed, in part, to the reserve of endophytic fungi that they harbour, that help enhance physiological and immunological defence and tolerance to various biotic and abiotic stressors. The present work has focussed on screening laccase producing endophytic fungi residing in different aquatic plants isolated from Hulimavu Lake, Bengaluru. This lake is well known for its water pollution contributed by anthropogenic factors. Survival of plants in this lake can hence be associated with their rich repertoire of endophytic fungi that enhance host plant defence towards stressors. Upon isolation and culturing of endophytic fungi, qualitative laccase detection using laccase specific growth media and quantitative laccase estimation using ABTS (2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)) substrate were performed. Differential production rates were observed for the laccase enzyme by different endophytic fungi; production rates also varied between fungi isolated from different parts like node, stem, root and leaf of the same plant species too. Phylogenetic analysis of fungal isolates with highest laccase production was performed and the species was found to be Cladosporium tenuissimum. Even the crude extract of this strain displayed laccase production of 42.16U/L, as revealed by ABTS assay. Hence this strain is a promising candidate for optimization studies for utilisation in the domain of bioremediation and industrial applications.

Publisher

Journal of Pure and Applied Microbiology

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3