Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections of the urinary tract, accounting for a high percentage of all infections. The insertion of a catheter into the bladder increases the susceptibility of the patient to tract infection and serves as the initial site of infection by introducing pathogenic organisms into the tract. Indwelling catheters in the bladder facilitate the colonization of uropathogens through various mechanisms. The objective of this study was to compare the different pathogenic bacteria causing UTIs and their antibiotic sensitivity patterns in catheterized and non-catheterized patients. The study included catheterized and non-catheterized patients, regardless of gender, exhibiting clinical signs or symptoms of urinary tract infection. Urine samples were examined and cultured for bacterial growth using standard microbiological procedures. After confirming the pathogens, antibiotic susceptibility testing was conducted on Mueller-Hinton agar using the Kirby-Bauer disc diffusion method. Out of the 200 samples, 88 were catheterized and 112 were non-catheterized. Catheterized patients exhibited a higher infection rate (39, 44.32%) compared to non-catheterized patients (31, 27.68%), and women had a higher infection rate than men. Various organisms were isolated, with Escherichia coli being the most common organism in both catheterized and non-catheterized patients. Among the tested drugs against gram-negative organisms, nitrofurantoin displayed higher sensitivity. The present study demonstrated a higher incidence of bacterial infection in catheterized patients compared to non-catheterized patients, highlighting the importance of avoiding unnecessary catheter insertion. To prevent antimicrobial resistance, it is crucial to implement various infection control policies, care bundle approaches, and regular surveillance.
Publisher
Journal of Pure and Applied Microbiology
Subject
Applied Microbiology and Biotechnology,Microbiology,Biotechnology
Reference26 articles.
1. 1. Collins AS. Preventing Health Care-Associated Infections. In: Hughes RG, ed. Patient Safety and Quality: An Evidence-Based Handbook for Nurses. Rockville (MD): Agency for Healthcare Research and Quality (US); April 2008.
2. 2. Patil AB, Nadagir SD, Praveen J, Dhaduti R, et al. Catheter-associated urinary tract infection: Aetiology, ESBL production, and risk factors. Journal, Indian Academy of Clinical Medicine. 2014;15(1):23.
3. 3. Feneley RC, Hopley IB, Wells PN. Urinary catheters: history, current status, adverse events and research agenda. J Med Eng Technol. 2015;39(8):459-470.doi: 10.3109/03091902.2015.1085600
4. 4. Adegun PT, Odimayo MS, Olaogun JG, Emmanuel EE. Comparison of uropathogens and antibiotic susceptibility patterns in catheterized ambulant middle-aged and elderly Nigerian patients with bladder outlet obstruction. Turk J Urol. 2018;45(1):48-55.doi: 10.5152/tud.2018.25588
5. 5. Sheerin NS. Urinary tract infection. Medicine. 2011;39(7):384-389.doi: 10.1016/j.mpmed.2011.04.003