Role of Oxacillin Susceptibility Testing Strategy in Changing Scenario of mecA Positive Staphylococcus aureus Isolates (OS-MRSA) Detection

Author:

Dhar EeshitaORCID,Tejashree A.ORCID,Karthik M.V.S. KrishnaORCID,Ramesh Pushkal SinduvadiORCID

Abstract

Staphylococcus aureus strains that are mecA and PBP2a positive but phenotypically susceptible to oxacillin are becoming more and more abundant, according to research from all around the world. The oxacillin susceptibility of Staphylococcus aureus (OS-MRSA) contributes to consequent treatment-failure due to misidentification by conventional susceptibility tests. Therefore, the objective of the current study was to ascertain the prevalence of OSMRSA in a tertiary care facility located in Mysore, South India. 395 MRSA isolates collected from diverse clinical samples were included in this lab-based prospective investigation. These isolates were tested using an oxacillin 1μg disc phenotypically by standard disc diffusion test, and simultaneously MIC to Oxacillin was determined from Vitek2 systems. Additionally, MRSA specific mecA gene detection was applied to these isolates in order to confirm their MRSA status genotypically. PCR findings demonstrate that 65% of the isolates were MRSA. The vitek2 system detected 4.06% OS-MRSA isolates with an oxacillin MIC of ≤2µg/ml. The disc diffusion method identified a total of 13.75% isolates as oxacillin sensitive and 10% isolates were oxacillin intermediately sensitive. Oxacillin sensitivity was shown for 1.87% of the mecA-positive MRSA isolates using the VITEK2 and disc diffusion techniques. This analysis found isolates with lower oxacillin MICs but relatively reduced OS-MRSA incidence. Using an oxacillin disc for routine laboratory MRSA detection might occasionally produce false negative results, which can result in improper antibiotic administration and treatment failure. In order to distinguish OS-MRSA from MRSA, it is crucial to combine phenotypic and genotypic techniques.

Publisher

Journal of Pure and Applied Microbiology

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3