Characterization of Aminoglycoside Modifying Enzymes Producing E. coli and Klebsiella pneumoniae Clinical Isolates

Author:

El-Gebaly EmanORCID,Farrag MohammedORCID,Dishisha TarekORCID,Bakeer WalidORCID

Abstract

Antimicrobial resistance gene profile characterization and dissemination offer useful detail on the possible challenge in treating bacteria. The development of aminoglycoside modifying enzymes (AMEs) is considered as the primary mechanism of resistance to aminoglycosides, in addition to the 16S rRNA methylases. This study aimed at isolation and characterization of aminoglycosides resistant clinical isolates of enterobacteriaceae family from different clinical samples. Over a period of 24 months, thirty samples were collected and 49 clinical isolates of E. coli [n=25], Klebsiella [n=13], Enterobacter species (n=7) and Proteus species (n=4) were isolated from Egyptian clinical laboratories. The identities of the cultures were confirmed following standard microbiological procedures. Resistance of the isolates to aminoglycosides was determined by the disc diffusion method and isolates with highest resistance (n=9) were selected and investigated for 16S rRNA methylase and AMES encoding genes by polymerase chain reaction (PCR) and sequencing. In general, aminoglycoside resistance was found in 95% of the isolates; the isolates displayed the highest rate of resistance to netilmicin (75%) and kanamycin (55%), while resistance to gentamycin (18%) and tobramycin (16%) was low. A total of 9 isolates have the highest aminoglycoside resistant rate, showed the highest appearance for aac(6′)-Ib as well as ant (3″)-Ia resistant genes, with aac (3)-II (44%) and ant (4′)-IIb (34%) following closely. The high prevalence of AMEs observed among resistant isolates in this study suggests the urgent need for more efficient treatment designs to mitigate the selection burden as well as improved care of patients who have been infected with these drug-resistant organisms.

Publisher

Journal of Pure and Applied Microbiology

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Countering Aminoglycoside Modifying Enzymes;Advances in Medical Technologies and Clinical Practice;2024-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3