Abstract
The xylanolytic and amylolytic yeasts were qualitatively determined by Cong red xylan agar and soluble starch agar plates, respectively. The most xylanase and α-amylase inducible strain (AUN-02) was selected and identified using PCR amplification of 26S rRNA gene and sequence analysis. The comparison of the alignment results and phylogenetic analysis of the sequences of the isolated yeast to published rRNA gene sequences in GenBank, confirmed the identification of the isolate as Pichia membranifaciens. Xylanase and α-amylase production by isolated P. membranifaciens were investigated at different pH values (4-8), temperature degrees (20-45°C), incubation time (1-7 days) and various substrates.A higher production of xylanase (38.8 U/mL) and a-amylase (28.7 U/mL) was obtained after 4 days of fermentation of P. membranifaciens. Higher activity of xylanase (36.83 U/mL) and a-amylase (27.7 U/mL) was obtained in the fermentation of P. membranifaciens in a culture medium adjusted to pH 7.0. The optimum temperature showed maximum xylanase and a-amylase activity (42.6 and 32.5 units/mL, respectively) was estimated at 35 °C. The xylanase and a-amylase activities of P. membranifaciens were estimated and compared for the different substrates tested. The strain revealed 100% relative activity of xylanase and a-amylase on beechwood and potato starch, respectively. The affinity of enzymes towards substrate was estimated using Km values. The Km values of xylanase and α-amylase increased in the order of pH’s 7.0, 6.0 and 4.5 (0.85, 1.6 and 3.4 mg xylan/mL and 0.22, 0.43 and 2.8 mg starch/mL, respectively). the yeast P. membranifaciensis is suitable for produce neutral xylanase and α-amylase enzymes. So, it could be used as a promising strain for production of these enzymes in industrial field.
Publisher
Journal of Pure and Applied Microbiology
Subject
Applied Microbiology and Biotechnology,Microbiology,Biotechnology
Reference51 articles.
1. 1. Saini R, Saini HS, Dahiya A. Amylases: Characteristics and industrial applications. J Pharmacogn Phytochem. 2017;6(4):1865-1871.
2. 2. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R. Advances in microbial amylases. Biotechnol Appl Biochem. 2000;31(2):135-152. doi: 10.1042/BA19990073
3. 3. Shariq M, Sohail M. Application of Candida tropicalis MK-160 for the production of xylanase and ethanol. J King Saud Univ Sci. 2019;31(4):1189-1194. doi: 10.1016/j.jksus.2018.04.009
4. 4. Singh V, Pandey VC, Agrawal S. Potential of Laceyella sacchari strain B42 crude xylanase in biobleaching of kraft pulp. Afr J Mycol Biotechnol. 2013;12(6).
5. 5. Patel S, Savanth V. Review on fungal xylanases and their applications. International Journal of Advanced Research. 2015;3(3):311-315.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献