Production and Optimization of Xylanase and α-Amylase from Non-Saccharomyces Yeasts (Pichia membranifaciens)

Author:

Salah Hala A.,Temerk Hanan A.,Salah Nivin A.,Alshehri Saeed Rafa Zara,Al-Harbi Jazi A.,Mawad Asmaa M.M.,Khaled Khaled A. M.,Hesham Abd El-LatifORCID,Amein Karam A.

Abstract

The xylanolytic and amylolytic yeasts were qualitatively determined by Cong red xylan agar and soluble starch agar plates, respectively. The most xylanase and α-amylase inducible strain (AUN-02) was selected and identified using PCR amplification of 26S rRNA gene and sequence analysis. The comparison of the alignment results and phylogenetic analysis of the sequences of the isolated yeast to published rRNA gene sequences in GenBank, confirmed the identification of the isolate as Pichia membranifaciens. Xylanase and α-amylase production by isolated P. membranifaciens were investigated at different pH values (4-8), temperature degrees (20-45°C), incubation time (1-7 days) and various substrates.A higher production of xylanase (38.8 U/mL) and a-amylase (28.7 U/mL) was obtained after 4 days of fermentation of P. membranifaciens. Higher activity of xylanase (36.83 U/mL) and a-amylase (27.7 U/mL) was obtained in the fermentation of P. membranifaciens in a culture medium adjusted to pH 7.0. The optimum temperature showed maximum xylanase and a-amylase activity (42.6 and 32.5 units/mL, respectively) was estimated at 35 °C. The xylanase and a-amylase activities of P. membranifaciens were estimated and compared for the different substrates tested. The strain revealed 100% relative activity of xylanase and a-amylase on beechwood and potato starch, respectively. The affinity of enzymes towards substrate was estimated using Km values. The Km values of xylanase and α-amylase increased in the order of pH’s 7.0, 6.0 and 4.5 (0.85, 1.6 and 3.4 mg xylan/mL and 0.22, 0.43 and 2.8 mg starch/mL, respectively). the yeast P. membranifaciensis is suitable for produce neutral xylanase and α-amylase enzymes. So, it could be used as a promising strain for production of these enzymes in industrial field.

Publisher

Journal of Pure and Applied Microbiology

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

Reference51 articles.

1. 1. Saini R, Saini HS, Dahiya A. Amylases: Characteristics and industrial applications. J Pharmacogn Phytochem. 2017;6(4):1865-1871.

2. 2. Pandey A, Nigam P, Soccol CR, Soccol VT, Singh D, Mohan R. Advances in microbial amylases. Biotechnol Appl Biochem. 2000;31(2):135-152. doi: 10.1042/BA19990073

3. 3. Shariq M, Sohail M. Application of Candida tropicalis MK-160 for the production of xylanase and ethanol. J King Saud Univ Sci. 2019;31(4):1189-1194. doi: 10.1016/j.jksus.2018.04.009

4. 4. Singh V, Pandey VC, Agrawal S. Potential of Laceyella sacchari strain B42 crude xylanase in biobleaching of kraft pulp. Afr J Mycol Biotechnol. 2013;12(6).

5. 5. Patel S, Savanth V. Review on fungal xylanases and their applications. International Journal of Advanced Research. 2015;3(3):311-315.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3