Abstract
Direct shedding of microbes by patients and health care workers results in contamination of Intensive care unit environment. Intensive care unit acquired infections due to microbial contamination is a major concern because the patient’s immunity is already compromised. To determine the rate of bacterial contamination on environmental surfaces of Intensive care unit and health care workers and to determine the antibiogram of the isolates. Air samples and swabs from healthcare workers, their accessories, surrounding environmental surfaces were collected randomly over a period of 2 months in Adult Intensive care units. Bacterial isolates were identified by standard microbiological techniques. Antibiotic sensitivity testing was performed by Kirby Bauer disc diffusion method and data analyzed by Statistical Product and Service Solutions 22 version software. A total of 208 samples were randomly collected over 2 months, of which 56 samples yielded positive bacterial growth. Of 56 growth, 12 isolates were detected from air sampling method and 44 isolates from swabs. Among 44 isolates identified from swabs, 10 were isolated from healthcare workers, 4 from health care worker’s accessories and 30 from environmental surfaces. Six different bacterial isolates were identified, Coagulase Negative Staphylococcus (24) and Micrococcus (15) were the major isolates followed by Non fermenters (6), Staphylococcus aureus(4), Bacillus species(4) and diphtheroids (3) The antimicrobial sensitivity pattern of these bacterial isolates were sensitive to commonly used antibacterial agents. Study results showed Intensive care unit staff and environmental surfaces as probable sources of bacterial contamination. Study highlights the importance of cleaning and disinfection process and educate the health care workers about the possible sources of infections within Intensive care unit.
Publisher
Journal of Pure and Applied Microbiology
Subject
Applied Microbiology and Biotechnology,Microbiology,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献