Abstract
Bioremediation is an important technology to remediate the chromium (Cr) contaminated soil and water. In this study, Shewanella putrefaciens (MTTC8410) was used to investigate the influence of carbon concentration, pH, and temperature on reduction of hexavalent chromium [Cr(VI)] into trivalent chromium [Cr(III)]. The increased bacterial growth rate was significantly reduced the Cr(VI) concentration. In batch mode experiments, 1% starch recorded the highest reduction of Cr(VI) (90%) followed by 1% glucose (88% reduction) and a reduction of 77% was by 1% cellulose. By using various pH conditions the maximum Cr(VI) reduction was achieved at pH 7.0. In this experiment the maximum Cr(VI) reduction (75%) was observed at 35°C, followed by 30°C with 62% of Cr(VI) reduction. Bioreactor analysis revealed the highest reduction of Cr(VI) (88%) in unsterile tannery effluent. The significant levels of physico- chemical parameters were reduced in unsterile tannery effluent, as compared to the sterile tannery effluent. The experimental results revealed that the S. putrefaciens (MTTC8410) could be used as a potential bacterial strain for reduction of Cr(VI) from contaminated groundwater.
Publisher
Journal of Pure and Applied Microbiology
Subject
Applied Microbiology and Biotechnology,Microbiology,Biotechnology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献