Stress Tolerance Effect of Three Different Sub-aerial Cyanobacteria sp. Isolated from Exteriors of Buildings under Adverse Environmental Conditions

Author:

Singh LakshmiORCID,Sethi Santosh KumarORCID

Abstract

The current interest of scientific study aims at survival mechanisms of the cyanobacteria on the extreme habitats (i.e. building facades and monuments) growing under adverse conditions. The present investigation points towards finding out indigenous which are tolerant of conflicting environmental conditions, such as pH, temperature and calcium carbonate. Three isolates of cyanobacteria Scytonema coactile, Scytonema geitleri and Lyngbya aerugineo–coerulea from a cave, building façade, and temple, Orissa respectively were examined. Tolerance to stress at different pH and temperature were evaluated by quantifying cyanobacteria growth at different time intervals. Tolerance to CaCO3 was studied by subjecting the isolates to the desired concentration 0.0001 – 1% w/v. Each organism was grown for 15 days at 25°C ± 1°C under continuous light intensity (7.5 W/m2) and then harvested, succeeded by SDS gel-electrophoresis protein analysis. Results revealed that three isolated cyanobacteria species from different sub-aerial habitats responded in a specific manner to different stress conditions and to various concentration of CaCO3 concerning protein synthesis. A 30 and 38 kDa protein was overproduced by all isolates under pH and temperature stress, whereas for CaCO3 stress, the protein of 16 and 22 kDa was overproduced by Lyngbya aerugineo–coerulea respectively which concluded that the survival of the isolates under stress conditions depends on specific protein synthesis. Generally, isolates tolerant to different stress may be due to specific protein synthesis for their survival to extreme habitats.

Publisher

Journal of Pure and Applied Microbiology

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

Reference52 articles.

1. 1. Adhikary SP, Sethi SK, Sahu JK. Recovery of Chlorophyll-a pigment and nitrogenase activity of different population sizes of Cyanobacteria after exposure to commercial fertilizers. In: Microbiology Applications, Rath, C.C. Har Krishan Bhalla & Sons (Ed.), New Delhi, India. 2013:365-379.

2. 2. Adhikary SP, Pattanaik H. Effect of organic carbon sources on the liberation of extracellular amino acid by nitrogen fixing blue green alga, Westiellopsis prolifica Janet in light and dark. Indian J Bot. 1981;4:60-69.

3. 3. Adhikary SP. Heat shock proteins in the terrestrial epilithiccyanobacterium Tolypothrix byssoidea. Biol Plant. 2003;47:125-128. doi: 10.1023/A:1027301503204

4. 4. Ascasco C, Wiezchos J, Castello R. Study of the biogenic weathering of calcareous litharenite stones caused by lichen and endolithic microorganisms. Int Biodeterior Biodegrad. 1998;42:29-38. doi: 10.1016/S0964-8305(98)00043-2

5. 5. Barbely G, Suranyi G, Korcz A, Palifi Z. Effect of heat shock on protein synthesis in the cyanobacterium Synechococcus sp. strain PCC 6301. J Bacteriol. 1985;161:1125-1130. doi: 10.1128/JB.161.3.1125-1130.1985

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3