Mining of Thermostable Alpha-amylase Gene from Geothermal Springs using a Metagenomics Approach

Author:

Chauhan Garima,Kumar Vikas,Arya Meghna,Kumari Asha,Srivastava Akriti,Khanna Prashansa,Sharma MonicaORCID

Abstract

The geothermal springs are said to contain the greatest diversity of undiscovered microorganisms, making them the best source for enzymes with economic significance. The untapped microbial diversity living in the geothermal springs can be mined for novel genes, bioactive substances, and industrially significant biocatalysts using the metagenomics technique. Metagenome was extracted from soil samples of various geothermal springs of India. Metagenome was screened for various carbohydrate degrading enzymes (amylase, cellulase, xylanase, amylopullulanase) using degenerate primers-based Polymerase chain reaction amplifications. Further amplicons were cloned, sequenced and analysis of data was done using various bioinformatics tools, e.g., Blast analysis, Protparam and phre2 program. We have isolated numerous enzymes, including cellulase, amylase, amylopullulanase, and xylanase, from diverse geothermal spring in different parts of India using sequence and function-based metagenomics. In this study, we describe the metagenomics-based isolation of a thermostable amylase from the geothermal spring of Odisha. The amylase gene (1503 bp) was amplified using the metagenome as a template using degenerate primers and cloned into the linearized T vector. The putative gene was likely to encode a protein of 469 amino acids with a molecular weight of 53895.05 Da with pI-7.78. Sequence analysis showed its maximum identity of 98.95% with Bacillus licheniformis alpha-amylase gene. Homology modeling of the amylase protein was done using the phyre2 program, which shows it belongs to the (trans) glycosidase superfamily and contains the catalytic TIM alpha/beta-barrel fold. Hence, we can conclude that geothermal springs are hotspots for the mining of industrially robust biocatalysts.

Publisher

Journal of Pure and Applied Microbiology

Subject

Applied Microbiology and Biotechnology,Microbiology,Biotechnology

Reference36 articles.

1. 1. Saxena A, Yadav AN, Rajawat M, et al. Microbial Diversity of Extreme Regions: An Unseen Heritage and Wealth. Indian J Genet Resour. 2016;29(3):256. doi: 10.5958/0976-1926.2016.00036.X

2. 2. Verma P, Yadav AN, Shukla L, Saxena AK, Suman A. Hydrolytic enzymes production by thermotolerant Bacillus altitudinis IARI-MB-9 and Gulbenkianiamobilis IARI-MB-18 isolated from Manikaran hot springs. Int J Adv Res. 2015;3:1241-1250.

3. 3. Panda MK, Sahu MK, Tayung K. Isolation and characterization of a thermophilic Bacillus sp. with protease activity isolated from hot spring of Tarabalo, Odisha, India. Iran J Microbiol. 2013;5(2):159-165.

4. 4. Parsai S, Choure K, Srivastava A, Rai P K, Agnihotri V, Singh Gour S. Lipase producing thermophilic bacteria isolation and characterization from hot springs of Central India. Natl J LIFE Sci. 2020;17(2):91-96. doi: 10.51365/NJLS.2020.v17i02.003

5. 5. Gong G, Zhou S, Luo R, Gesang Z, Suolang S. Metagenomic insights into the diversity of carbohydrate-degrading enzymes in the yak faecal microbial community. BMC Microbiol. 2020;20:302-310. doi: 10.1186/s12866-020-01993-3

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3