Microbial Induced Biotechnological Processes for Biofuel Production from Waste Organics Conversion

Author:

Pillai Sruthy MSORCID,Srivastava Rajesh KumarORCID,Singh Sujeet PratapORCID

Abstract

In the current era there are huge quantities of waste organic matter available, creating a big burden to the environment. To address these issues, researchers started to apply effective and microbial induced biotechnological processes that can mitigate these waste matters. In this context, different nature of microbial systems are involved in hydrolysing the waste organic material into fermentable sugar. These can be easily consumed by specific microbial systems like Saccharomyces cerevisiae MTCC 3821 and Clostridium acetobutylicum that produced bioethanol and biobutanol, respectively. Saccharomyces cerevisiae was cultured in specific media and incubated at rotary shaker with 150 rpm at 30°C for 72 to 96 hours. Ethanol concentrations from different waste matters were found in the range of 1.2-1.5 g.L-1. Ethanol synthesis was done by shake flask experiment with addition of glucose (50 g.L-1) to waste organic hydrolyzed solution. Non-glucose media produced less than 3 g.L-1 ethanol but glucose media produced 4.5 g.L-1. Next, Clostridium acetobutylicum was grown in culture media containing waste organics as sole carbon substrate with pH 7 and then was incubated in anaerobic conditions at 35°C for 72 hours, produced butanol (0.7 to 1.25 g.L-1). This research work promoted biofuels synthesis by keeping a waste mitigation strategy.

Publisher

Journal of Pure and Applied Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3