Understanding the Pathogenesis of Endothelial Injury Induced by Bluetongue Virus in Experimentally Infected Sheep

Author:

Singh DeeptiORCID,Saminathan M.ORCID,Dinesh M.ORCID,Pavulraj S.ORCID,Milton A.A.P.ORCID,Dhama K.ORCID,Ranjith D.ORCID,Sharma G.K.,Singh AyushiORCID,Singh K.P.ORCID

Abstract

Bluetongue (BT) is an economically important contagious viral disease transmitted by insect vectors of Culicoides species affecting both domestic and wild ruminants caused by Genus Orbivirus of Reoviridae family. Present in vivo study for the first time conducted to understand the role of oxidative stress and acute phase proteins in the pathogenesis of endothelial injury in target blood vessels of BTV-4 infected sheep. Twelve sheep of either sex were divided into two groups of six animals each and infected intradermally at multiple sites in the neck region with 6×105.9 TCID50/ml of BTV-4 and animals of control group were inoculated with uninfected tissue culture fluid. Animals were sacrificed at 3, 7, 15, 28, 60, and 90 days post infection (dpi) and postmortem examination was conducted. Oxidative stress parameters like LPO, SOD, GPO and catalase in the blood vessels, hemolysate and serum were estimated. Oxidative stress parameter like LPO was upregulated and anti-oxidant parameters like SOD and GPO were downregulated in blood vessels homogenates, hemolysate and serum of BTV-4 infected animals than uninfected control. This shows the role of oxidative stress in causing endothelial cell damage during BTV infection. Acute phase proteins like CRP and fibrinogen in serum and plasma were estimated and found upregulated in BTV-4 infected animals, which shows that inflammatory changes during the disease causes vascular damage. Prothrombin time was estimated in plasma of BTV-4 infected animals and was prolonged in BTV infected animals indicating coagulation disorder. Increased oxidative stress and fibrinogen, and prolonged prothrombin time indicated the coagulation disorders induced by BTV infection by causing endothelial cell damage and severe vascular disease results in congestion, haemorrhages and edema in the blood vessels and other target organs in sheep.

Publisher

Journal of Pure and Applied Microbiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3