Complex-modified basalt plastics

Author:

Kadykova Y. A.1,Bredikhin P. A.1,Arzamastsev S. V.1,Kalganova S. G.1

Affiliation:

1. Saratov state technical University named after Gagarin Yu. A.

Abstract

In view of the fact that the creation and development of the production of new polymers practically does not occur, the modification of known materials, the creation of polymer composites filled with various substances is today one of the priority directions in the creation of new polymeric materials. In this paper, the possibility of increasing the reactivity by processing corona discharge of large-capacity polymer-polyethylene when filled with modified basalt. The method of full factorial experiment, regression equations, analysis of which showed a prevailing influence of DC corona discharge on the physico-mechanical characteristics of polymeric composite materials. The optimal ratio of the components of the composite material and the current during the processing of polyethylene corona discharge were chosen by gradient method. The prospects and expediency of obtaining complex-modified basalt plastics on the basis of low-pressure polyethylene treated with corona discharge are proved, since all physical, chemical and mechanical properties of polyethylene composites are increased. The method of infrared spectroscopy shows that in a complex-modified basalt plastic there are practically no groups of hydroxyl groups, the intensity of peaks of methylol groups and peaks –Si-O-Si-is significantly reduced, which indicates the chemical interaction of polyethylene treated with corona discharge and modified basalt.

Publisher

FSBEI HE Voronezh State University of Engineering Technologies

Subject

General Agricultural and Biological Sciences

Reference10 articles.

1. Bredikhin P.A., Nurtazina A.S., Kadykova Y.A. Polyethylene, filled with modified disperse fillers. Khimicheskie tekhnologii funktsional’nykh materialov [III international Russian-Kazakhstan scientific-practical conference "Chemical technology of functional materials"] Novosibirsk, Izd-vo NGTU, 2017. pp. 26–28. (in Russian)

2. Bredikhin, P.A., Kadykova Y.A. Polyethylene filled with basalt modified. Teoreticheskie I eksperimental’nye issledovaniya protsessov [IV Russian scientific conference "Theoretical and experimental study of processes synthesis, modification and processing of polymers"] Ufa, RITS Bashgu, 2016. pp. 17–18. (in Russian)

3. Krutovoi A. Activation of films by corona discharge. Plastiks [Plastics] 2014. no. 11 (140). pp. 18–22. (in Russian)

4. Revyako M.M., Petrushina F.A., Tolkach O. Ya., Treatment of polymers corona discharge in the production of layered composite materials. Trudy BGTU [Proceedings of BSTU. Chemistry and technology of organic substances and biotechnology] 2011. no. 4. pp. 72–75. (in Russian)

5. Werner E., Semichev A., Shorikov A. Koronnyi priem dlya polimera [Corona device for polymer] Available at: https://www.publish.ru/articles/200902_7179484.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3