System analysis of the ethylbenzene dehydrogenation reactor as a control object

Author:

Popov A. P.1,Bityukov V. K.1,Tikhomirov S. G.1,Neizvestnyi O. G.2,Chertov E. D.1

Affiliation:

1. Voronezh state university of engineering technologies

2. Voronezh state technical university

Abstract

Catalytic dehydrogenation of ethylbenzene charge in a two-stage continuous-action adiabatic reactor is the main stage of the styrene production process. The analysis of this technological process existing automated control systems revealed the following main drawback, that these systems require great efforts from production personnel to ensure a change of the reactor temperature regime in the stages of the reactor in accordance with styrene concentration drop, which is caused by deactivation catalytic layer deactivation. Therefore, the synthesis of the target product concentration at the reactor outlet predictive control system is actual task in the field of technical cybernetics. This article presents the system analysis results of the dehydrogenation reactor as a control object. The main research result is a method choice for controlling of the chemical transformations temperature regime in the reactor, using that, it is possible to increase the energy efficiency and productivity of this device. The general and specific tasks of the control system synthesis are formulated on the basis of the system analysis, the information and functional synthesis of the temperature regime ACS is produced, the information and functional schemes of the reactor unit process equipment control subsystems are developed. As an operating system ACS is selected, which realizes of steam-ethylbenzene mixture temperature change at the reaction zones entrances of the 1st and 2nd reactor sections in accordance with the program control algorithm on the basis of predicting models, describing the heat exchange processes occurring inside the reactor stages as well as the dynamics of changes in such parameters as the concentration of coke deposits, catalyst activity, the basic and by- products concentration of chemical reactions.

Publisher

FSBEI HE Voronezh State University of Engineering Technologies

Subject

General Agricultural and Biological Sciences

Reference8 articles.

1. Tekhreglament proizvodstva stirola na OAO «Nizhnekamsk» [Technological regulation of production of styrene at Nizhnekamskneftekhim] 1980. (in Russian)

2. Bityukov V.K., Popov A.P., Tikhomirov S.G., Neizvestnyi  O.G. Modeling of ethylbenzene dehydrogenation kinetics process taking in-to account deactivation of catalyst bed of the reactor. Vestnik VGUIT [Proceedings of VSUET] 2017, vol. 79.no. 1(71). pp. 73–80. (in Russian)

3. Popov A.P., Neizvestnyi O.G, Podvalnyi S.L., Tikhomirov S.G. The isothermal kinetics modeling of ethylbenzene dehydrogenation. Modelirovanie energoeffektivnykh protsessov [Modeling of energy information processes: Articles collection of the VI international scientific and practical Internet conference] Voronezh, VSUET, 2017. pp. 194–198. (in Russian)

4. Jackson G. Simulation of an Isothermal Catalytic Membrane Reactor for the dehydrogenation of ethylbenzene. Chemical and Process Engineering Research. 2012. vol. 3. pp. 14-28.

5. Jian Z., Dang S.S., Raoul B., Robert S. et al. Surface Chemistry and Catalytic Reactivity of a Nanodiamond in the Steam-Free Dehydrogenation of Ethylbenzene. Angewandtechemie - Iinternational edition. 2010. vol. 49. no. 46. pp. 8640-8644.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation into the Change in the Composition of the Ethylbenzene Feed in a Styrene Production Reactor while Taking into Account the Partial Pressures of the Reactants;Theoretical Foundations of Chemical Engineering;2020-11

2. Information model of production system management;Proceedings of the Voronezh State University of Engineering Technologies;2019-03-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3