Technology for obtaining a deposited catalyst based on an aluminosilicate matrix modified with europium oxide

Author:

Kuznetsova I. V.1ORCID,Sugatov D. S.1,Gryzlova V. I.1

Affiliation:

1. Voronezh State University of Engineering Technologies

Abstract

The number of cars used worldwide is constantly growing. In this regard, the problem of combating atmospheric pollutants - exhaust gases of internal combustion engines is of particular relevance. Over the years, automakers have made many improvements to car engine design and fuel systems to meet pollution limits. One of the best solutions to this problem is the use of a so-called catalytic converter (converter) or simply a catalyst with a high content of noble metals, the main function of which is the simultaneous oxidation of unburned hydrocarbons and CO, as well as the reduction of nitrogen oxides. It was found that the addition of rare earth metals to Pd, Pt catalysts improves their properties and reduces the proportion of noble metals in the composition of catalysts. The paper presents the results of a study of complexation in the Eu3+-ligand system, where the ligand is an organic acid, by photocolorimetric and potentiometric methods. In the Eu3+-gallic acid system, a stable complex of the composition MeLnx – 1:2 is formed. In the Eu3+- oxalic acid system, a stable complex of the composition MeLnx – 1:1 is formed. In the Eu3+-valine system, a stable complex of the composition MeLnx – 1:2 is formed. A new technique for obtaining complex compounds is shown, consisting in adding hydrogen peroxide H2O2 to a solution containing solutions of Eu3+ salt and organic acid in an aqueous-alcoholic medium to block the reduction of Eu3+→Eu2+.  A technology for obtaining a automotive catalyst has been developed, consisting of successive stages: obtaining complex compounds, applying the obtained complex compounds to ceramic block matrices, drying, applying platinum (palladium) acid, calcination. The presence of the Eu3+ ion in the ceramic matrix is proved by the method of elemental analysis. The technology can be applied to solve the problem of environmental pollution, such pollutants as exhaust gases of cars containing a lot of harmful substances in their composition.

Publisher

FSBEI HE Voronezh State University of Engineering Technologies

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3